Home > Statistical Methods calculators > Kruskal-wallis test example

3. Non parametric test - Kruskal-wallis test example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Non parametric test - Sign test
  2. Non parametric test - Mann whitney U test
  3. Non parametric test - Kruskal-wallis test
  4. Non parametric test - Chi square test
  5. Non parametric test - Median test
  6. Non parametric test - Mood's Median test
  7. Parametric test - F test
  8. Parametric test - t-test
  9. Parametric test - Standard error

2. Non parametric test - Mann whitney U test
(Previous method)
2. Example-2
(Next example)

1. Example-1





1. Non parametric test - Kruskal-wallis test for the following data
8,5,7,11,9,6
10,12,11,9,13,12
11,14,10,16,17,12
18,20,16,15,14,22, Significance Level `alpha=0.05` and One-tailed test


Solution:
Step-1: Take the hypothesis
Null Hypothesis `H_0` : All groups are equal

Alternative Hypothesis `H_1` : Atleast one group is not equal

Step-2: Ranking all group values
Size in Ascending OrderRankName of related sample
A for sample-1
B for sample-2
C for sample-3
D for sample-4
Rank for ARank for BRank for CRank for D
51A1
62A2
73A3
84A4
95.5B5.5
95.5A5.5
107.5C7.5
107.5B7.5
1110C10
1110B10
1110A10
1213C13
1213B13
1213B13
1315B15
1416.5D16.5
1416.5C16.5
1518D18
1619.5D19.5
1619.5C19.5
1721C21
1822D22
2023D23
2224D24
Total25.56487.5123

The rank total for A is `R_1=25.5`

The rank total for B is `R_2=64`

The rank total for C is `R_3=87.5`

The rank total for D is `R_4=123`

Step-3: Compute test statistic
`sum R_j^2/n_j=(25.5)^2/6+(64)^2/6+(87.5)^2/6+(123)^2/6=4588.5833`

n = total number of samples = 24

`H=12/(n(n+1)) sum R_j^2/n_j - 3(n+1)`

`=12/(24(24+1)) (4588.5833) - 3(24+1)`

`=12/600 * (4588.5833) - 75`

`=16.7717`

Step-4: `alpha=0.05`

Step-5: Compute the degrees of freedom (df).
`df=(4-1)=3`

Step-6:
The Critical value of chi-square is `chi^2(0.05,3)=7.8147`

Since the computed `H`(16.7717) > critical `chi^2`(7.8147)

So we reject the null hypothesis (`H_0`).


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Non parametric test - Mann whitney U test
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.