1. Find Solution of an equation 1/x using Simpson's 3/8 rule
x1 = 1 and x2 = 2
Step value (h) = 0.25
Solution:
Equation is `f(x) = 1/x`.
The value of table for `x` and `y`
x | 1 | 1.25 | 1.5 | 1.75 | 2 |
---|
y | 1 | 0.8 | 0.6667 | 0.5714 | 0.5 |
---|
Using Simpson's `3/8` Rule
`int y dx = (3h)/8 [(y_0+y_4) + 2(y_3) + 3(y_1+y_2)]`
`int y dx = (3xx0.25)/8 [(1 + 0.5) + 2xx(0.5714) + 3xx(0.8 + 0.6667)]`
`int y dx = (3xx0.25)/8 [(1 + 0.5) + 2xx(0.5714) + 3xx(1.4667)]`
`int y dx = 0.6603`
Solution by Simpson's `3/8` Rule is `0.6603`
2. Find Solution of an equation 2x^3-4x+1 using Simpson's 3/8 rule
x1 = 2 and x2 = 4
Step value (h) = 0.5
Solution:
Equation is `f(x) = 2x^3-4x+1`.
The value of table for `x` and `y`
x | 2 | 2.5 | 3 | 3.5 | 4 |
---|
y | 9 | 22.25 | 43 | 72.75 | 113 |
---|
Using Simpson's `3/8` Rule
`int y dx = (3h)/8 [(y_0+y_4) + 2(y_3) + 3(y_1+y_2)]`
`int y dx = (3xx0.5)/8 [(9 + 113) + 2xx(72.75) + 3xx(22.25 + 43)]`
`int y dx = (3xx0.5)/8 [(9 + 113) + 2xx(72.75) + 3xx(65.25)]`
`int y dx = 86.8594`
Solution by Simpson's `3/8` Rule is `86.8594`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then