Home > College Algebra calculators > Modulo example

5. Modulo example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `19^24 mod 21`
  3. Example-3 : `7^106 mod 143`
  4. Example-4 : `27^400 mod 619`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation

2. Example-2 : `19^24 mod 21`
(Previous example)
4. Example-4 : `27^400 mod 619`
(Next example)

3. Example-3 : `7^106 mod 143`





7^106 mod 143

Solution:
`7^106" mod "143`

Here `7^106=(7^3)^35*7`

`=(((7^3" mod "143)^35" mod "143)*(7" mod "143))" mod "143`

`=(((343" mod "143)^35" mod "143)*7)" mod "143`

`=((57^35" mod "143)*7)" mod "143`

Here `57^35=(57^2)^17*57`

`=(((57^2" mod "143)^17" mod "143)*(57" mod "143)*7)" mod "143`

`=(((3249" mod "143)^17" mod "143)*113)" mod "143` `("where "(57*7)" mod "143=399" mod "143=113)`

`=((103^17" mod "143)*113)" mod "143`

Here `103^17=(103^2)^8*103`

`=(((103^2" mod "143)^8" mod "143)*(103" mod "143)*113)" mod "143`

`=(((10609" mod "143)^8" mod "143)*56)" mod "143` `("where "(103*113)" mod "143=11639" mod "143=56)`

`=((27^8" mod "143)*56)" mod "143`

Here `27^8=(27^2)^4`

`=(((27^2" mod "143)^4" mod "143)*56)" mod "143`

`=(((729" mod "143)^4" mod "143)*56)" mod "143`

`=((14^4" mod "143)*56)" mod "143`

Here `14^4=(14^2)^2`

`=(((14^2" mod "143)^2" mod "143)*56)" mod "143`

`=(((196" mod "143)^2" mod "143)*56)" mod "143`

`=((53^2" mod "143)*56)" mod "143`

Here `53^2=(53^2)^1`

`=((2809" mod "143)*56)" mod "143`

`=(92*56)" mod "143`

`=5152" mod "143`

`=4`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 : `19^24 mod 21`
(Previous example)
4. Example-4 : `27^400 mod 619`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.