Home > College Algebra calculators > Chinese Remainder Theorem example

1. Chinese Remainder Theorem example ( Enter your problem )
  1. Example-1 : x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)
  2. Example-2 : x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
  3. Example-3 : 2x=5 (mod 7),3x=4 (mod 8)
Other related methods
  1. Chinese Remainder Theorem
  2. Modulo
  3. Fast modular exponentiation
  4. Fermat's Little Theorem
  5. Extended Euclidean Algorithm
  6. Euclid's Algorithm
  7. Modular multiplicative inverse

2. Example-2 : x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
(Previous example)
2. Modulo
(Next method)

3. Example-3 : 2x=5 (mod 7),3x=4 (mod 8)





1. Chinese Remainder Theorem to solve `2x=5 (mod 7),3x=4 (mod 8)`

Solution:
Method-2: Successive substitution method
`2x-=5\ ("mod "7)->(1)`

`3x-=4\ ("mod "8)->(2)`

from (1)
`2x-=5\ ("mod "7)`

Here `2^(-1)-=4\ ("mod "7)`

`:. 4xx2x-=4xx5\ ("mod "7)`

`:. 8x-=20\ ("mod "7)`

`:. x-=6\ ("mod "7)`

Hence `x=6+7a`

Now from (2), `3x-=4\ ("mod "8)`

`:. 3(6+7a)-=4\ ("mod "8)`

`:. 18+21a-=4\ ("mod "8)`

`:. 2+5a-=4\ ("mod "8)`

`:. 5a-=2\ ("mod "8)`

Here `5^(-1)-=5\ ("mod "8)`

`:. 5xx5a-=5xx2\ ("mod "8)`

`:. 25a-=10\ ("mod "8)`

`:. a-=2\ ("mod "8)`

Hence `a=2+8b`

But `x=6+7a`

`:.x=6+7(2+8b)`

`:.x=6+14+56b`

`:.x=20+56b`

`:.x-=20\ ("mod "56)`


2. Chinese Remainder Theorem to solve `2x=6 (mod 14),3x=9 (mod 15),5x=20 (mod 60)`

Solution:
Method-2: Successive substitution method
`2x-=6\ ("mod "14)`

divide by 2, we get
`x-=3\ ("mod "7)->(1)`


`3x-=9\ ("mod "15)`

divide by 3, we get
`x-=3\ ("mod "5)->(2)`


`5x-=20\ ("mod "60)`

divide by 5, we get
`x-=4\ ("mod "12)->(3)`


from (1)
`x-=3\ ("mod "7)`

Hence `x=3+7a`

Now from (2), `x-=3\ ("mod "5)`

`:. (3+7a)-=3\ ("mod "5)`

`:. 3+2a-=3\ ("mod "5)`

`:. 2a-=0\ ("mod "5)`

Here `2^(-1)-=3\ ("mod "5)`

`:. 3xx2a-=3xx0\ ("mod "5)`

`:. 6a-=0\ ("mod "5)`

`:. a-=0\ ("mod "5)`

Hence `a=0+5b`

But `x=3+7a`

`:.x=3+7(0+5b)`

`:.x=3+0+35b`

`:.x=3+35b`

Now from (3), `x-=4\ ("mod "12)`

`:. (3+35b)-=4\ ("mod "12)`

`:. 3+11b-=4\ ("mod "12)`

`:. 11b-=1\ ("mod "12)`

Here `11^(-1)-=11\ ("mod "12)`

`:. 11xx11b-=11xx1\ ("mod "12)`

`:. 121b-=11\ ("mod "12)`

`:. b-=11\ ("mod "12)`

Hence `b=11+12c`

But `x=3+35b`

`:.x=3+35(11+12c)`

`:.x=3+385+420c`

`:.x=388+420c`

`:.x-=388\ ("mod "420)`


3. Chinese Remainder Theorem to solve `x=1 (mod 4),x=0 (mod 6)`

Solution:
`x-=1\ ("mod "4)->(1)`

`x-=0\ ("mod "6)->(2)`

`a_1=1,a_2=0`

`n_1=4,n_2=6`

Check if each `n_i` is pairwise coprime

`GCD(4,6)=2`

Here gcd is not 1, so the given equations has no solution.


Method-2: Successive substitution method
`x-=1\ ("mod "4)->(1)`

`x-=0\ ("mod "6)->(2)`

from (1)
`x-=1\ ("mod "4)`

Hence `x=1+4a`

Now from (2), `x-=0\ ("mod "6)`

`:. (1+4a)-=0\ ("mod "6)`

`:. 4a-=-1\ ("mod "6)`

`:. 4a-=5\ ("mod "6)`

Here, `gcd(4,6)=2` and 2 does not divide 5

So this is impossible




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 : x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
(Previous example)
2. Modulo
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.