2. Find roots of the equation `(x)/(x+1) + (x+1)/(x) = (5)/(2)`
` (x)/(x+1) + (x+1)/(x) = (5)/(2)`
` => (x)*(x)*(2) + (x+1)*(x+1)*(2) = (5)*(x+1)*(x)`
` => 2x^2 + (2x^2+4x+2) = (5x^2+5x)`
` => 2x^2 + (2x^2+4x+2) + (-5x^2-5x) = 0`
` => -x^2-x+2 = 0`
` => (-x^2-x+2) = 0`
` => -x^2-x+2 = 0`
` => (-1)(x^2+x-2) = 0`
` => (-1)(x^2-x+2x-2) = 0`
` => (-1)(x(x-1)+2(x-1)) = 0`
` => (-1)(x+2)(x-1) = 0`
` => (x+2) = 0" or "(x-1) = 0`
` => x = -2" or "x = 1`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then