Home > Word Problems calculators > Geometric Progression Word Problems example

Geometric Progression examples ( Enter your problem )
 
  1. Example-1
Other related methods
  1. Statistics Word Problem
  2. HCF-LCM Word Problem
  3. Percentage
  4. Profit Loss Discount
  5. Simple Interest
  6. Compound Interest
  7. Installment
  8. Arithmetic Progression
  9. Geometric Progression

8. Arithmetic Progression
(Previous method)

1. Example-1

Problem : 1 / 23 [ Geometric Progression ]       Enter your problem
1. For given geometric progression series 3,6,12,24,48 ,... find 10 th term and addition of first 10 th terms.
Solution: Here `a = 3,`

`r = 6/3 = 2`

We know that, `a_n = a × r^(n-1)`

`a_10 = 3 × 2^(10 - 1)`

`= 3 × 512`

`= 1536`

We know that, `S_n = a * (r^n - 1)/(r - 1)`

`:. S_10 = 3 × (2^10 - 1)/(2 - 1)`

`=> S_10 = 3 × (1024 - 1)/1`

`=> S_10 = 3 × 1023/1`

`=> S_10 = 3069`

Hence, `10^(th)` term of the given series is `1536` and sum of first `10^(th)` term is `3069`


Problem : 2 / 23 [ Geometric Progression ]       Enter your problem
2. For given geometric progression series 3,6,12,24,48 ,... then find n such that S(n) = 3069 .
Solution: Here `a = 3,`

`r = 6/3 = 2`

We know that, `S_n = a * (r^n - 1)/(r - 1)`

`=> S_n = 3 × ((2)^n - 1) / (2 - 1)`

`=> 3069 = 3 × ((2)^n - 1)/(1)`

`=> 2^n - 1 = 3069 × (1) / 3`

`=> 2^n - 1 = 1023`

`=> 2^n = 1024`

`=> 2^n = 2^10`

`=> n = 10`


Problem : 3 / 23 [ Geometric Progression ]       Enter your problem
3. For given geometric progression series 3,6,12,24,48 ,... then find n such that f(n) = 1536 .
Solution: Here `a = 3,`

`r = 6/3 = 2`

Let n be the term such that `f(n) = 1536`

We know that, `a_n = a × r^(n-1)`

`=> 3 × 2^(n-1) = 1536`

`=> 2^(n-1) = 512`

`=> 2^(n-1) = 2^9`

`=> n - 1 = 9`

`=> n = 9 + 1`

`=> n = 10`


Problem : 4 / 23 [ Geometric Progression ]       Enter your problem
4. For geometric progression f( 1 ) = 2 , f( 4 ) = 54 then find f( 3 ) and S( 3 ).
Solution: We know that, `a_n = a × r^(n-1)`

Here `a_1 = 2`

`=> a × r^(1 - 1) = 2`

`=> a × r^0 = 2`

`=> a = 2 ->(1)`



`a_4 = 54`

`=> a × r^(4 - 1) = 54`

`=> a × r^3 = 54 ->(2)`

Solving `(1)` and `(2)`, we get `a = 2` and `r = 3`


We know that, `a_n = a × r^(n-1)`

`a_3 = 2 × 3^(3 - 1)`

`= 2 × 9`

`= 18`

We know that, `S_n = a * (r^n - 1)/(r - 1)`

`:. S_3 = 2 × (3^3 - 1)/(3 - 1)`

`=> S_3 = 2 × (27 - 1)/2`

`=> S_3 = 2 × 26/2`

`=> S_3 = 26`


Problem : 5 / 23 [ Geometric Progression ]       Enter your problem
5. For geometric progression f( 1 ) = 2 , f( 4 ) = 54 , then find n such that f(n) = 18 .
Solution: We know that, `a_n = a × r^(n-1)`

Here `a_1 = 2`

`=> a × r^(1 - 1) = 2`

`=> a × r^0 = 2`

`=> a = 2 ->(1)`



`a_4 = 54`

`=> a × r^(4 - 1) = 54`

`=> a × r^3 = 54 ->(2)`

Solving `(1)` and `(2)`, we get `a = 2` and `r = 3`


Let n be the term such that `f(n) = 18`

We know that, `a_n = a × r^(n-1)`

`=> 2 × 3^(n-1) = 18`

`=> 3^(n-1) = 9`

`=> 3^(n-1) = 3^2`

`=> n - 1 = 2`

`=> n = 2 + 1`

`=> n = 3`


Problem : 6 / 23 [ Geometric Progression ]       Enter your problem
6. For geometric progression addition of 3 terms is 26 and their multiplication is 216 , then that numbers
Solution: Let the terms are `(a / r) , a , (a × r)`

Addition : `(a / r) + a + (a × r) = 26 ->(1)`

Multiplication : `(a / r) × a × (a × r) = 216`

`=> a^3 = 216`

`=> a = 6`



Now putting `a = 6` in `(1)`, we get

`(6 / r) + 6 + (6 × r) = 26`

`(6 / r) + (6 × r) = 20`

`=> r = 3` or `r = 1/3`

Now, `a = 6` and `r = 3 => (6 / 3) , 6 , (6 × 3) => 2 , 6 , 18`

or `a = 6` and `r = 1/3 => (6 / (1/3)) , 6 , (6 × (1/3)) => 18 , 6 , 2`


Problem : 7 / 23 [ Geometric Progression ]       Enter your problem
7. For geometric progression multiplication of 5 terms is 1 and 5 th term is 81 times then the 1 th term.
Solution: Let the terms are `(a / r^2) , (a / r) , a , (a × r) , (a × r^2)`

Multiplication : `(a / r^2) * (a / r) * a * (a × r) * (a × r^2) = 1`

`=> a^5 = 1`

`=> a = 1`

Now `5^(th)` term is `81` times than the `1^(st)` term

`=> (a × r^2) = 81 (a / r^2)`

`=> r^4 = 81`

`=> r = 3`

Now, `a = 1` and `r = 3 => (1 / 3^2) , (1 / 3) , 1 , (1 × 3) , (1 × 3^2) => 0.1111 , 0.3333 , 1 , 3 , 9`


Problem : 8 / 23 [ Geometric Progression ]       Enter your problem
8. Arithmetic mean of two number is 13 and geometric mean is 12 , then find that numbers
Solution: Let the two terms be `a` and `b`.

`=> A = (a + b)/2 = 13` and `G = sqrt(ab) = 12`

`=> a + b = 26 ->(1)` and `ab = 144 ->(2)`

`=> b = 26 - a ->(3)`

Now putting the value of `(3)` in `(2)`, we get

`a(26 - a) = 144`

`=> 26a - a^2 = 144`

`=> a^2 - 26a + 144 = 0`

`=> (a - 8)(a - 18) = 0`

`=> a = 8` or `a = 18`

`=> a = 8 => b = 26 - a = 26 - 8 = 18`

and `a = 18 => b = 26 - a = 26 - 18 = 8`

`:.` Required numbers are `8` and `18`


Problem : 9 / 23 [ Geometric Progression ]       Enter your problem
9. Two numbers are in the ratio 9 : 16 and difference of arithmetic mean and geometric mean is 1 , then find that numbers
Solution: Here ratio of the two terms is `9:16`.

Let the two terms be `9x` and `16x`.

Now difference of their Arithmetic mean `A` and Geometric mean `G` is `1`.

`=> A - G = 1` (Because `A` > `G`).

`=> (9x + 16x)/2 - sqrt(9x × 16x) = 1`.

`=> (25x)/2 - sqrt(144) x = 1`.

`=> x = 2`

`=>` The required two terms are `9 × 2` and `16 × 2`.

`=>` The required two terms are `18` and `32`.


Problem : 10 / 23 [ Geometric Progression ]       Enter your problem
10. Find 6 arithmetic mean between 3 and 24 .
Solution: Let ` A_1, A_2, A_3, A_4, A_5, A_6` be the `6` arithmetic mean between `3` and `24`.

`:. 3, A_1, A_2, A_3, A_4, A_5, A_6, 24` are in AP .

Here First term `a = 3` and Last term `b = 24`

Comman difference `d = (b-a)/(n+1) = (24-3)/(6+1) = 21/7 = 3`

`:.` Required Arithemetic Means,

`A_1 = T_2 = a + d = 3 + 3 = 6`

`A_2 = T_3 = a + 2d = 3 + 2(3) = 9`

`A_3 = T_4 = a + 3d = 3 + 3(3) = 12`

`A_4 = T_5 = a + 4d = 3 + 4(3) = 15`

`A_5 = T_6 = a + 5d = 3 + 5(3) = 18`

`A_6 = T_7 = a + 6d = 3 + 6(3) = 21`


Problem : 11 / 23 [ Geometric Progression ]       Enter your problem
11. Find 3 geometric mean between 1 and 256 .
Solution: Let ` a_1, a_2, a_3` be the `3` geometric mean between `1` and `256`.

`:. 1, a_1, a_2, a_3, 256` are in GP .

Here First term `a = 1` and Last term `b = 256`

Comman ratio `r = (b/a)^(1/(n+1)) = (256/1)^(1/4) = 4`

`:.` Required Geometic Means,

`a_1 = a * r = 1 * 4 = 4`

`a_2 = a r^2 = 1 × 4^2 = 16`

`a_3 = a r^3 = 1 × 4^3 = 64`


Problem : 12 / 23 [ Geometric Progression ]       Enter your problem
12. Prove that `1 + (1 + 2) + (1 + 2 + 3) + ... n` terms `= n/6 (n + 1) (n + 2)`
Solution: L.H.S. `= 1 + (1 + 2) + (1 + 2 + 3) + ... + n` terms

`= sum [ f(n) ]`

`= sum [ sum n ]`

`= sum [ n/2 (n + 1) ]`

`= 1/2 sum n^2 + 1/2 sum n`

`= 1/2 * (n (n + 1) (2n + 1))/6 + 1/2 * (n (n + 1))/2`

`= (n (n + 1) (2n + 1))/12 + (n (n + 1))/4`

`= (n (n + 1) (2n + 1 + 3))/12`

`= (n (n + 1) (2n + 4))/12`

`= (n (n + 1) (n + 2))/6`

`=` R.H.S. (Proved)


Problem : 13 / 23 [ Geometric Progression ]       Enter your problem
13. Prove that `1 * (2^2 - 3^2) + 2 * (3^2 - 4^2) + 3 * (4^2 - 5^2) + ... n` terms `= n/6 (n + 1) (4n + 11)`
Solution: L.H.S. `= 1 × (2^2 - 3^2) + 2 × (3^2 - 4^2) + 3 × (4^2 - 5^2) + ... n` terms

`= sum [ f(n) ]`

`= sum [ n ((n + 1)^2 - (n + 2)^2) ]`

`= sum [ n (n^2 + 2n + 1 - n^2 - 2n - 4) ]`

`= sum [ n (-2n - 3) ]`

`= sum (-2n^2 - 3n) ]`

`= -2 sum n^2 - 3 sum n`

`= -2 * (n (n + 1) (2n + 1))/6 - 3 * (n (n + 1))/2`

`= - n/6 (n + 1) [ 2(2n + 1) + 9 ]`

`= - n/6 (n + 1) (4n + 11)`

`=` R.H.S. (Proved)


Problem : 14 / 23 [ Geometric Progression ]       Enter your problem
14. `1 + x^4 + 3^2 + 4 + x^6 + 6^2 + 7 + x^8 + 9^2 + ... 3n` terms
Solution: `S_(3n) = 1 + x^4 + 3^2 + 4 + x^6 + 6^2 + 7 + x^8 + 9^2 + ... 3n` terms

`= (1 + 4 + 7 + ... n " terms") + (x^4 + x^6 + x^8 + ... n " terms") + (3^2 + 6^2 + 9^2+ ... n " terms")`

`= (1 + 4 + 7 + ... n " terms") + x^4 (1 + x^2 + x^4 + ... n " terms") + 3^2 (1 + 2^2 + 3^2 + ... n " terms")`

`= n/2 [ 2 × 1 + (n - 1) × 3 ] + x^4 [ (x^2)^n - 1 ] / ( x^2 - 1) + 9 × n/6 (n + 1) (2n + 1)`

`= n/2 (3n - 1) + x^4 (x^(2n) - 1) / ( x^2 - 1) + (3n)/2 (n + 1) (2n + 1)`


Problem : 15 / 23 [ Geometric Progression ]       Enter your problem
15. 1 + (1 + 3) + (1 + 3 + 5) + ... n terms
Solution: `S_n = sum [ f(n) ]`

`= sum [ sum (2n - 1) ]`

`= sum [ 2 sum n - sum 1 ]`

`= sum [ 2 * (n (n + 1))/2 - n ]`

`= sum [ n^2 + n - n ]`

`= sum n^2`

`= (n (n + 1) (2n + 1))/6`


Problem : 16 / 23 [ Geometric Progression ]       Enter your problem
16. Prove that for all n belongs to N, `1^2 * n + 2^2 * (n - 1) + 3^2 * (n - 2) + ... + n^2 * 1 = n/12 (n + 1)^2 (n + 2)`
Solution: Here, `f(r) = r^2 (n -r + 1) = (n + 1) r^2 - r^3`

Now, L.H.S. `= 1^2 × n + 2^2 (n - 1) + 3^2 (n - 2) + ... + n^2 × 1`

`= sum [ (n + 1) r^2 - r^3 ]` (Where r = 1 to n)

`= (n + 1) sum r^2 - sum r^3` (Where r = 1 to n)

`= (n + 1) * (n (n + 1) (2n + 1))/6 - (n^2 (n + 1)^2)/4`

`= (n (n + 1)^2 [ 2 (2n + 1) - 3 n])/12`

`= (n (n + 1)^2 (n + 2))/12`

`=` R.H.S. (Proved)


Problem : 17 / 23 [ Geometric Progression ]       Enter your problem
17. Prove that `1 * 2^2 + 3 * 5^2 + 5 * 8^2 + ... n` terms `= n/2 (9n^3 + 4n^2 - 4n - 1)`
Solution: L.H.S. `= 1 × 2^2 + 3 × 5^2 + 5 × 8^2 + ... n` terms

`= sum [ f(n) ]`

`= sum [ (2n - 1)(3n - 1)^2 ]`

`= sum [ (2n - 1)(9n^2 - 6n + 1)]`

`= sum [ 18n^3 - 21n^2 + 8n - 1]`

`= 18 sum n^3 - 21 sum n^2 + 8 sum n - sum 1`

`= 18 * (n^2 (n+1)^2)/4 - 21 * (n (n + 1) (2n + 1))/6 + 8 * (n (n+1))/2 - n`

`= n/2 [ 9 n (n + 1)^2 - 7(n + 1) (2n + 1) + 8 (n+1) - 2 ]`

`= n/2 [ 9 n (n^2 + 2n +1) - 7 (2n^2 + 3n + 1) + 8 n + 8 - 2 ]`

`= n/2 [ 9 n^3 + 18 n^2 + 9n - 14n^2 - 21n - 7 + 8 n + 8 - 2 ]`

`= n/2 [ 9 n^3 + 4 n^2 - 4n - 1 ]`

`=` R.H.S. (Proved)


Problem : 18 / 23 [ Geometric Progression ]       Enter your problem
18. Prove that `1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ... n` terms `= n/12 (n + 1)^2 (n + 2)`
Solution: L.H.S. `= 1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + ... n` terms

`= sum [ f(n) ]`

`= sum [ sum n^2 ]`

`= sum [ n/6 (n + 1) (2n + 1) ]`

`= sum [ n/6 (2n^2 + 3n + 1) ]`

`= sum [ 1/6 (2n^3 + 3n^2 + n) ]`

`= 1/6 [ 2 sum n^3 + 3 sum n^2 + sum n ]`

`= 1/6 [ 2 * (n^2 (n+1)^2)/4 + 3 * (n (n + 1) (2n + 1))/6 + (n (n + 1))/2 ]`

`= 1/6 [ (n^2 (n+1)^2)/2 + (n (n + 1) (2n + 1))/2 + (n (n + 1))/2 ]`

`= 1/6 * (n (n + 1))/2 [ n (n+1) + (2n + 1) + 1 ]`

`= n/12 (n + 1) [ n^2 + n + 2n + 2 ]`

`= n/12 (n + 1) [ n^2 + 3n + 2 ]`

`= n/12 (n + 1) [ (n + 2) (n + 1) ]`

`= n/12 (n + 1)^2 (n + 2)`

`=` R.H.S. (Proved)


Problem : 19 / 23 [ Geometric Progression ]       Enter your problem
19. Prove that 2 + 5 + 10 + 17 + ... n terms = `n/6 (2n^2 + 3n + 7)`
Solution: L.H.S. `= 2 + 5 + 10 + 17 + ... n` terms

`= sum [ 1 + n^2 ]`

`= sum 1 + sum n^2`

`= n + (n (n + 1) (2n + 1))/6`

`= n/6 [ 6 + (2n^2 + 3n + 1) ]`

`= n/6 (2n^2 + 3n + 7)`

`=` R.H.S. (Proved)


Problem : 20 / 23 [ Geometric Progression ]       Enter your problem
20. Prove that `sum [ sum (2n -3) ] = n/6 (n + 1)(2n - 5)`
Solution: L.H.S. `= sum [ sum (2n -3) ]`

`= sum [ sum 2n - sum 3 ]`

`= sum [ 2 × n/2 (n + 1) -3n ]`

`= sum [ n (n + 1) - 3n ]`

`= sum [ n^2 + n - 3n ]`

`= sum [ n^2 - 2n ]`

`= sum n^2 - 2 sum n`

`= (n (n + 1) (2n + 1))/6 - 2 * (n (n + 1))/2`

`= (n (n + 1) [ (2n + 1) - 6 ])/6`

`= (n (n + 1) (2n - 5))/6`

`=` R.H.S. (Proved)


Problem : 21 / 23 [ Geometric Progression ]       Enter your problem
21. For geometric progression, find `1 + 1/sqrt(2) + 1/2 + 1/(2*sqrt(2)) + ... 10` terms ( For geometric progression, find `1 + 1/sqrt(x) + 1/x + 1/(x*sqrt(x)) + ... n` terms where x = 2 and n = 10 . )
Solution: Here `a = 1, r = 1 / sqrt(2), n = 10`

We know that, `S_n = a * (1 - r^n)/(1 - r)`

`:. S_10 = 1 × (1 - (1 / sqrt(2))^10) / (1 - 1 / sqrt(2))`

`= 1 × (1 - (1 / 2)^5) / ((sqrt(2) - 1) / sqrt(2))`

`= sqrt(2) × 1 × (1 - 1 / 32) / (sqrt(2) - 1) `

`= sqrt(2) × 1 × ((32 - 1) / 32) / (sqrt(2) - 1) × (sqrt(2) + 1) / (sqrt(2) + 1)`

`= sqrt(2) × 1 × (31/32) / (2 - 1) × (sqrt(2) + 1)`

`= (31/32) × sqrt(2) × (sqrt(2) + 1)`

`= (31/32) × (2 + sqrt(2))`


Problem : 22 / 23 [ Geometric Progression ]       Enter your problem
22. Find `1^2 + 2^2 + ...+ 10^2` , ( Find `a^2 + b^2 + ... + n^2` , where a = 1 , b = 2 and n = 10 . )
Solution: Here Find ` 1^2 + 2^2 + 3^2 + ... + 10^2 `

`= sum i^2` (where `i = 1,...,10`)

`= (n (n + 1)(2n + 1)) / 6` (where `n = 10`)

`= (10 (10 + 1) (2×10 + 1)) / 6 `

`= (10 × 11 × 21) / 6`

`= 5 × 11 × 7`

`= 385`


Problem : 23 / 23 [ Geometric Progression ]       Enter your problem
23. Find `1^2 + 2^2 + ... 10` terms, ( Find `a^2 + b^2 + ... n` terms, where a = 1 , b = 2 and n = 10 . )
Solution: Here Find ` 1^2 + 2^2 + 3^2 + ... 10 "terms" `

`= sum i^2` (where `i = 1,...,10`)

`= (n (n + 1)(2n + 1)) / 6` (where `n = 10`)

`= (10 (10 + 1) (2×10 + 1)) / 6 `

`= (10 × 11 × 21) / 6`

`= 5 × 11 × 7`

`= 385`



8. Arithmetic Progression
(Previous method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.