Solve Equations x+y+z=3,2x-y-z=3,x-y+z=9 using Inverse Matrix methodSolution:Here `x+y+z=3`
 `2x-y-z=3`
 `x-y+z=9`
Now converting given equations into matrix form 
`[[1,1,1],[2,-1,-1],[1,-1,1]] [[x],[y],[z]]=[[3],[3],[9]]`
Now, A = `[[1,1,1],[2,-1,-1],[1,-1,1]]`, X = `[[x],[y],[z]]` and B = `[[3],[3],[9]]`
`:.AX = B`
`:.X = A^-1 B`
| `|A|` |  =  |  |  `1`  |  `1`  |  `1`  |  |   |  `2`  |  `-1`  |  `-1`  |  |   |  `1`  |  `-1`  |  `1`  |  |  
  | 
`=1 xx (-1 × 1 - (-1) × (-1)) -1 xx (2 × 1 - (-1) × 1) +1 xx (2 × (-1) - (-1) × 1)`
`=1 xx (-1 -1) -1 xx (2 +1) +1 xx (-2 +1)`
`=1 xx (-2) -1 xx (3) +1 xx (-1)`
`= -2 -3 -1`
`=-6`
`"Here, " |A| = -6 != 0`
`:. A^(-1) " is possible."`
| `Adj(A)` |  =  | | Adj |  | `1` | `1` | `1` |  |   | `2` | `-1` | `-1` |  |   | `1` | `-1` | `1` |  |  
  |  
  | 
|  =  |  | `+(-1 × 1 - (-1) × (-1))` | `-(2 × 1 - (-1) × 1)` | `+(2 × (-1) - (-1) × 1)` |  |   | `-(1 × 1 - 1 × (-1))` | `+(1 × 1 - 1 × 1)` | `-(1 × (-1) - 1 × 1)` |  |   | `+(1 × (-1) - 1 × (-1))` | `-(1 × (-1) - 1 × 2)` | `+(1 × (-1) - 1 × 2)` |  |  
  | T |  
  | 
|  =  |  | `+(-1 -1)` | `-(2 +1)` | `+(-2 +1)` |  |   | `-(1 +1)` | `+(1 -1)` | `-(-1 -1)` |  |   | `+(-1 +1)` | `-(-1 -2)` | `+(-1 -2)` |  |  
  | T |  
  | 
|  =  |  | `-2` | `-3` | `-1` |  |   | `-2` | `0` | `2` |  |   | `0` | `3` | `-3` |  |  
  | T |  
  | 
|  =  |  | `-2` | `-2` | `0` |  |   | `-3` | `0` | `3` |  |   | `-1` | `2` | `-3` |  |  
  | 
`"Now, "A^(-1)=1/|A| × Adj(A)`
`"Here, "X = A^(-1) × B`
`:. X = 1/|A| × Adj(A) × B`
|  =  | `1/(-6)` × |  | `-2` | `-2` | `0` |  |   | `-3` | `0` | `3` |  |   | `-1` | `2` | `-3` |  |  
  |  ×  |  | 
|  =  | `-1/6` × |  | `-2×3-2×3+0×9` |  |   | `-3×3+0×3+3×9` |  |   | `-1×3+2×3-3×9` |  |  
  | 
`:.[[x],[y],[z]]=[[2],[-3],[4]]`
`:.x=2,y=-3,z=4`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then