Home > Numerical methods calculators > Steffensen's method example

8. Steffensen's method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

1. Algorithm & Example-1 `f(x)=x^3-x-1`
(Previous example)
3. Example-3 `f(x)=x^3+2x^2+x-1`
(Next example)

2. Example-2 `f(x)=2x^3-2x-5`





Find a root of an equation `f(x)=2x^3-2x-5` using Steffensen's method

Solution:
Here `2x^3-2x-5=0`

Let `f(x) = 2x^3-2x-5`

Here
`x`012
`f(x)`-5-57



Here `f(1) = -5 < 0 and f(2) = 7 > 0`

`:.` Root lies between `1` and `2`

`x_0 = (1 + 2)/2 = 1.5`

`x_0 = 1.5`


`1^(st)` iteration :

`f(x_0)=f(1.5)=2*1.5^3-2*1.5-5=-1.25`

`f(x_0+f(x_0))=f(1.5+-1.25)=-5.4688`

`x_1=x_0-(f(x_0)^2)/(f(x_0+f(x_0))-f(x_0))`

`x_1=1.5-((-1.25)^2)/(-5.4688--1.25)`

`x_1=1.8704`


`2^(nd)` iteration :

`f(x_1)=f(1.8704)=2*1.8704^3-2*1.8704-5=4.3454`

`f(x_1+f(x_1))=f(1.8704+4.3454)=462.8797`

`x_2=x_1-(f(x_1)^2)/(f(x_1+f(x_1))-f(x_1))`

`x_2=1.8704-((4.3454)^2)/(462.8797-4.3454)`

`x_2=1.8292`


`3^(rd)` iteration :

`f(x_2)=f(1.8292)=2*1.8292^3-2*1.8292-5=3.5823`

`f(x_2+f(x_2))=f(1.8292+3.5823)=301.1224`

`x_3=x_2-(f(x_2)^2)/(f(x_2+f(x_2))-f(x_2))`

`x_3=1.8292-((3.5823)^2)/(301.1224-3.5823)`

`x_3=1.7861`


`4^(th)` iteration :

`f(x_3)=f(1.7861)=2*1.7861^3-2*1.7861-5=2.823`

`f(x_3+f(x_3))=f(1.7861+2.823)=181.6021`

`x_4=x_3-(f(x_3)^2)/(f(x_3+f(x_3))-f(x_3))`

`x_4=1.7861-((2.823)^2)/(181.6021-2.823)`

`x_4=1.7415`


`5^(th)` iteration :

`f(x_4)=f(1.7415)=2*1.7415^3-2*1.7415-5=2.0801`

`f(x_4+f(x_4))=f(1.7415+2.0801)=98.978`

`x_5=x_4-(f(x_4)^2)/(f(x_4+f(x_4))-f(x_4))`

`x_5=1.7415-((2.0801)^2)/(98.978-2.0801)`

`x_5=1.6968`


`6^(th)` iteration :

`f(x_5)=f(1.6968)=2*1.6968^3-2*1.6968-5=1.3775`

`f(x_5+f(x_5))=f(1.6968+1.3775)=46.9661`

`x_6=x_5-(f(x_5)^2)/(f(x_5+f(x_5))-f(x_5))`

`x_6=1.6968-((1.3775)^2)/(46.9661-1.3775)`

`x_6=1.6552`


`7^(th)` iteration :

`f(x_6)=f(1.6552)=2*1.6552^3-2*1.6552-5=0.7592`

`f(x_6+f(x_6))=f(1.6552+0.7592)=18.32`

`x_7=x_6-(f(x_6)^2)/(f(x_6+f(x_6))-f(x_6))`

`x_7=1.6552-((0.7592)^2)/(18.32-0.7592)`

`x_7=1.6224`


`8^(th)` iteration :

`f(x_7)=f(1.6224)=2*1.6224^3-2*1.6224-5=0.2959`

`f(x_7+f(x_7))=f(1.6224+0.2959)=5.282`

`x_8=x_7-(f(x_7)^2)/(f(x_7+f(x_7))-f(x_7))`

`x_8=1.6224-((0.2959)^2)/(5.282-0.2959)`

`x_8=1.6048`


`9^(th)` iteration :

`f(x_8)=f(1.6048)=2*1.6048^3-2*1.6048-5=0.0567`

`f(x_8+f(x_8))=f(1.6048+0.0567)=0.8503`

`x_9=x_8-(f(x_8)^2)/(f(x_8+f(x_8))-f(x_8))`

`x_9=1.6048-((0.0567)^2)/(0.8503-0.0567)`

`x_9=1.6008`


`10^(th)` iteration :

`f(x_9)=f(1.6008)=2*1.6008^3-2*1.6008-5=0.0024`

`f(x_9+f(x_9))=f(1.6008+0.0024)=0.0344`

`x_10=x_9-(f(x_9)^2)/(f(x_9+f(x_9))-f(x_9))`

`x_10=1.6008-((0.0024)^2)/(0.0344-0.0024)`

`x_10=1.6006`


`11^(th)` iteration :

`f(x_10)=f(1.6006)=2*1.6006^3-2*1.6006-5=0`

`f(x_10+f(x_10))=f(1.6006+0)=0.0001`

`x_11=x_10-(f(x_10)^2)/(f(x_10+f(x_10))-f(x_10))`

`x_11=1.6006-((0)^2)/(0.0001-0)`

`x_11=1.6006`


Approximate root of the equation `2x^3-2x-5=0` using Steffensen's method is `1.6006` (After 11 iterations)

`n``x_0``f(x_0)``f(x_0+f(x_0))``x_1`Update
11.5-1.25-5.46881.8704`x_0 = x_1`
21.87044.3454462.87971.8292`x_0 = x_1`
31.82923.5823301.12241.7861`x_0 = x_1`
41.78612.823181.60211.7415`x_0 = x_1`
51.74152.080198.9781.6968`x_0 = x_1`
61.69681.377546.96611.6552`x_0 = x_1`
71.65520.759218.321.6224`x_0 = x_1`
81.62240.29595.2821.6048`x_0 = x_1`
91.60480.05670.85031.6008`x_0 = x_1`
101.60080.00240.03441.6006`x_0 = x_1`
111.600600.00011.6006`x_0 = x_1`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Algorithm & Example-1 `f(x)=x^3-x-1`
(Previous example)
3. Example-3 `f(x)=x^3+2x^2+x-1`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.