Algorithm
Secant method Steps (Rule)
|
Step-1:
|
Find points x_0 and x_1 such that x_0 < x_1 and f(x_0) * f(x_1) < 0.
|
Step-2:
|
find next value using
Formula-1 : x_2=x_0-f(x_0)*(x_1-x_0)/(f(x_1)-f(x_0))
or Formula-2 : x_2=(x_0*f(x_1)-x_1*f(x_0))/(f(x_1)-f(x_0))
or Formula-3 : x_2=x_1-f(x_1)*(x_1-x_0)/(f(x_1)-f(x_0))
(Using any of the formula, you will get same x2 value)
|
Step-3:
|
If f(x_2) = 0 then x_2 is an exact root,
else x_0 = x_1 and x_1 = x_2
|
Step-4:
|
Repeat steps 2 & 3 until f(x_i) = 0 or |f(x_i)| <= "Accuracy"
|
Example-1
1. Find a root of an equation f(x)=x^3-x-1 using Secant method
Solution:
Here x^3-x-1=0
Let f(x) = x^3-x-1
Here
1^(st) iteration :
x_0 = 1 and x_1 = 2
f(x_0) = f(1) = -1 and f(x_1) = f(2) = 5
:. x_2 = x_0 - f(x_0) * (x_1 - x_0) / (f(x_1) - f(x_0))
x_2 = 1 - (-1) xx (2 - 1)/(5 - (-1))
x_2 = 1.16667
:. f(x_2) = f(1.16667) = -0.5787
2^(nd) iteration :
x_1 = 2 and x_2 = 1.16667
f(x_1) = f(2) = 5 and f(x_2) = f(1.16667) = -0.5787
:. x_3 = x_1 - f(x_1) * (x_2 - x_1) / (f(x_2) - f(x_1))
x_3 = 2 - 5 xx (1.16667 - 2)/(-0.5787 - 5)
x_3 = 1.25311
:. f(x_3) = f(1.25311) = -0.28536
3^(rd) iteration :
x_2 = 1.16667 and x_3 = 1.25311
f(x_2) = f(1.16667) = -0.5787 and f(x_3) = f(1.25311) = -0.28536
:. x_4 = x_2 - f(x_2) * (x_3 - x_2) / (f(x_3) - f(x_2))
x_4 = 1.16667 - (-0.5787) xx (1.25311 - 1.16667)/(-0.28536 - (-0.5787))
x_4 = 1.33721
:. f(x_4) = f(1.33721) = 0.05388
4^(th) iteration :
x_3 = 1.25311 and x_4 = 1.33721
f(x_3) = f(1.25311) = -0.28536 and f(x_4) = f(1.33721) = 0.05388
:. x_5 = x_3 - f(x_3) * (x_4 - x_3) / (f(x_4) - f(x_3))
x_5 = 1.25311 - (-0.28536) xx (1.33721 - 1.25311)/(0.05388 - (-0.28536))
x_5 = 1.32385
:. f(x_5) = f(1.32385) = -0.0037
5^(th) iteration :
x_4 = 1.33721 and x_5 = 1.32385
f(x_4) = f(1.33721) = 0.05388 and f(x_5) = f(1.32385) = -0.0037
:. x_6 = x_4 - f(x_4) * (x_5 - x_4) / (f(x_5) - f(x_4))
x_6 = 1.33721 - 0.05388 xx (1.32385 - 1.33721)/(-0.0037 - 0.05388)
x_6 = 1.32471
:. f(x_6) = f(1.32471) = -0.00004
Approximate root of the equation x^3-x-1=0 using Secant method is 1.32471
n | x_0 | f(x_0) | x_1 | f(x_1) | x_2 | f(x_2) | Update |
1 | 1 | -1 | 2 | 5 | 1.16667 | -0.5787 | x_0 = x_1 x_1 = x_2 |
2 | 2 | 5 | 1.16667 | -0.5787 | 1.25311 | -0.28536 | x_0 = x_1 x_1 = x_2 |
3 | 1.16667 | -0.5787 | 1.25311 | -0.28536 | 1.33721 | 0.05388 | x_0 = x_1 x_1 = x_2 |
4 | 1.25311 | -0.28536 | 1.33721 | 0.05388 | 1.32385 | -0.0037 | x_0 = x_1 x_1 = x_2 |
5 | 1.33721 | 0.05388 | 1.32385 | -0.0037 | 1.32471 | -0.00004 | x_0 = x_1 x_1 = x_2 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then