Home > Numerical methods calculators > Secant method example

5. Secant method example ( Enter your problem )
  1. Algorithm & Example-1 f(x)=x^3-x-1
  2. Example-2 f(x)=2x^3-2x-5
  3. Example-3 x=sqrt(12)
  4. Example-4 x=root(3)(48)
  5. Example-5 f(x)=x^3+2x^2+x-1
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

4. Fixed Point Iteration method
(Previous method)
2. Example-2 f(x)=2x^3-2x-5
(Next example)

1. Algorithm & Example-1 f(x)=x^3-x-1





Algorithm
Secant method Steps (Rule)
Step-1: Find points x_0 and x_1 such that x_0 < x_1 and f(x_0) * f(x_1) < 0.
Step-2: find next value using
Formula-1 : x_2=x_0-f(x_0)*(x_1-x_0)/(f(x_1)-f(x_0))
or Formula-2 : x_2=(x_0*f(x_1)-x_1*f(x_0))/(f(x_1)-f(x_0))
or Formula-3 : x_2=x_1-f(x_1)*(x_1-x_0)/(f(x_1)-f(x_0))
(Using any of the formula, you will get same x2 value)
Step-3: If f(x_2) = 0 then x_2 is an exact root,
else x_0 = x_1 and x_1 = x_2
Step-4: Repeat steps 2 & 3 until f(x_i) = 0 or |f(x_i)| <= "Accuracy"

Example-1
1. Find a root of an equation f(x)=x^3-x-1 using Secant method

Solution:
Here x^3-x-1=0

Let f(x) = x^3-x-1

Here
x012
f(x)-1-15



1^(st) iteration :

x_0 = 1 and x_1 = 2

f(x_0) = f(1) = -1 and f(x_1) = f(2) = 5

:. x_2 = x_0 - f(x_0) * (x_1 - x_0) / (f(x_1) - f(x_0))

x_2 = 1 - (-1) xx (2 - 1)/(5 - (-1))

x_2 = 1.16667

:. f(x_2) = f(1.16667) = -0.5787


2^(nd) iteration :

x_1 = 2 and x_2 = 1.16667

f(x_1) = f(2) = 5 and f(x_2) = f(1.16667) = -0.5787

:. x_3 = x_1 - f(x_1) * (x_2 - x_1) / (f(x_2) - f(x_1))

x_3 = 2 - 5 xx (1.16667 - 2)/(-0.5787 - 5)

x_3 = 1.25311

:. f(x_3) = f(1.25311) = -0.28536


3^(rd) iteration :

x_2 = 1.16667 and x_3 = 1.25311

f(x_2) = f(1.16667) = -0.5787 and f(x_3) = f(1.25311) = -0.28536

:. x_4 = x_2 - f(x_2) * (x_3 - x_2) / (f(x_3) - f(x_2))

x_4 = 1.16667 - (-0.5787) xx (1.25311 - 1.16667)/(-0.28536 - (-0.5787))

x_4 = 1.33721

:. f(x_4) = f(1.33721) = 0.05388


4^(th) iteration :

x_3 = 1.25311 and x_4 = 1.33721

f(x_3) = f(1.25311) = -0.28536 and f(x_4) = f(1.33721) = 0.05388

:. x_5 = x_3 - f(x_3) * (x_4 - x_3) / (f(x_4) - f(x_3))

x_5 = 1.25311 - (-0.28536) xx (1.33721 - 1.25311)/(0.05388 - (-0.28536))

x_5 = 1.32385

:. f(x_5) = f(1.32385) = -0.0037


5^(th) iteration :

x_4 = 1.33721 and x_5 = 1.32385

f(x_4) = f(1.33721) = 0.05388 and f(x_5) = f(1.32385) = -0.0037

:. x_6 = x_4 - f(x_4) * (x_5 - x_4) / (f(x_5) - f(x_4))

x_6 = 1.33721 - 0.05388 xx (1.32385 - 1.33721)/(-0.0037 - 0.05388)

x_6 = 1.32471

:. f(x_6) = f(1.32471) = -0.00004


Approximate root of the equation x^3-x-1=0 using Secant method is 1.32471

nx_0f(x_0)x_1f(x_1)x_2f(x_2)Update
11-1251.16667-0.5787x_0 = x_1
x_1 = x_2
2251.16667-0.57871.25311-0.28536x_0 = x_1
x_1 = x_2
31.16667-0.57871.25311-0.285361.337210.05388x_0 = x_1
x_1 = x_2
41.25311-0.285361.337210.053881.32385-0.0037x_0 = x_1
x_1 = x_2
51.337210.053881.32385-0.00371.32471-0.00004x_0 = x_1
x_1 = x_2



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Fixed Point Iteration method
(Previous method)
2. Example-2 f(x)=2x^3-2x-5
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.