Home > Numerical methods calculators > Newton Raphson method example

3. Newton Raphson method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

2. False Position method (regula falsi method)
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)

1. Algorithm & Example-1 `f(x)=x^3-x-1`





Algorithm
Newton Raphson method Steps (Rule)
Step-1: Find points `a` and `b` such that `a < b` and `f(a) * f(b) < 0`.
Step-2: Take the interval `[a, b]` and
find next value `x_0 = (a+b)/2`
Step-3: Find `f(x_0)` and `f'(x_0)`
`x_1 = x_0 - f(x_0)/(f'(x_0))`
Step-4: If `f(x_1) = 0` then `x_1` is an exact root,
else `x_0 = x_1`
Step-5: Repeat steps 3 and 4 until `f(x_i) = 0` or `|f(x_i)| <= "Accuracy"`

Example-1
1. Find a root of an equation `f(x)=x^3-x-1` using Newton Raphson method

Solution:
Here `x^3-x-1=0`

Let `f(x) = x^3-x-1`

`:. f'(x) = 3x^2-1`

Here
`x`012
`f(x)`-1-15



Here `f(1) = -1 < 0 and f(2) = 5 > 0`

`:.` Root lies between `1` and `2`

`x_0 = (1 + 2)/2 = 1.5`


`1^(st)` iteration :

`f(x_0) = f(1.5) = 0.875`

`f'(x_0) = f'(1.5) = 5.75`

`x_1 = x_0 - f(x_0)/(f'(x_0))`

`x_1 = 1.5 - (0.875)/(5.75)`

`x_1 = 1.34783`


`2^(nd)` iteration :

`f(x_1) = f(1.34783) = 0.10068`

`f'(x_1) = f'(1.34783) = 4.44991`

`x_2 = x_1 - f(x_1)/(f'(x_1))`

`x_2 = 1.34783 - (0.10068)/(4.44991)`

`x_2 = 1.3252`


`3^(rd)` iteration :

`f(x_2) = f(1.3252) = 0.00206`

`f'(x_2) = f'(1.3252) = 4.26847`

`x_3 = x_2 - f(x_2)/(f'(x_2))`

`x_3 = 1.3252 - (0.00206)/(4.26847)`

`x_3 = 1.32472`


`4^(th)` iteration :

`f(x_3) = f(1.32472) = 0`

`f'(x_3) = f'(1.32472) = 4.26463`

`x_4 = x_3 - f(x_3)/(f'(x_3))`

`x_4 = 1.32472 - (0)/(4.26463)`

`x_4 = 1.32472`


Approximate root of the equation `x^3-x-1=0` using Newton Raphson method is `1.32472`

`n``x_0``f(x_0)``f'(x_0)``x_1`Update
11.50.8755.751.34783`x_0 = x_1`
21.347830.100684.449911.3252`x_0 = x_1`
31.32520.002064.268471.32472`x_0 = x_1`
41.3247204.264631.32472`x_0 = x_1`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. False Position method (regula falsi method)
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.