Home > Numerical methods calculators > Muller method example

6. Muller method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

5. Secant method
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)

1. Algorithm & Example-1 `f(x)=x^3-x-1`






Example-1
1. Find a root of an equation `f(x)=x^3-x-1` using Muller method

Solution:
Here `x^3-x-1=0`

Let `f(x) = x^3-x-1`

Here
`x`012
`f(x)`-1-15


`x_0 = 1`

`x_1 = 2`

`x_2 = 1.5`


`1^(st)` iteration :

`f(x_0)=f(1)=1^(3)-1-1=-1`

`f(x_1)=f(2)=(2)^(3)-2-1=5`

`f(x_2)=f(1.5)=(1.5)^(3)-1.5-1=0.875`

`h_1=x_1-x_0=2-1=1`

`h_2=x_2-x_1=1.5-2=-0.5`

`delta_1=(f(x_1)-f(x_0))/h_1=(5--1)/1=6`

`delta_2=(f(x_2)-f(x_1))/h_2=(0.875-5)/-0.5=8.25`

`a=(delta_2-delta_1)/(h_2+h_1)=(8.25-6)/(-0.5+1)=4.5`

`b=a xx h_2 + d_2=4.5xx-0.5+8.25=6`

`c=f(x_2)=0.875`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=1.5+(-2 xx 0.875)/(6 + sqrt(6^2 - 4xx 4.5 xx 0.875))`

`=1.5+(-1.75)/(6 + sqrt(20.25))`

`=1.5+(-1.75)/(6 + 4.5)`

`=1.33333`

Relative percent error
`varepsilon_(a^1)=|(x_3-x_2)/x_3| xx 100%=|(1.33333-1.5)/1.33333| xx 100%=12.5%`

Now,
`x_0=x_1=2`

`x_1=x_2=1.5`

`x_2=x_3=1.33333`


`2^(nd)` iteration :

`f(x_0)=f(2)=(2)^(3)-2-1=5`

`f(x_1)=f(1.5)=(1.5)^(3)-1.5-1=0.875`

`f(x_2)=f(1.33333)=(1.33333)^(3)-1.33333-1=0.03704`

`h_1=x_1-x_0=1.5-2=-0.5`

`h_2=x_2-x_1=1.33333-1.5=-0.16667`

`delta_1=(f(x_1)-f(x_0))/h_1=(0.875-5)/-0.5=8.25`

`delta_2=(f(x_2)-f(x_1))/h_2=(0.03704-0.875)/-0.16667=5.02778`

`a=(delta_2-delta_1)/(h_2+h_1)=(5.02778-8.25)/(-0.16667+-0.5)=4.83333`

`b=a xx h_2 + d_2=4.83333xx-0.16667+5.02778=4.22222`

`c=f(x_2)=0.03704`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=1.33333+(-2 xx 0.03704)/(4.22222 + sqrt(4.22222^2 - 4xx 4.83333 xx 0.03704))`

`=1.33333+(-0.07407)/(4.22222 + sqrt(17.11111))`

`=1.33333+(-0.07407)/(4.22222 + 4.13656)`

`=1.32447`

Relative percent error
`varepsilon_(a^2)=|(x_3-x_2)/x_3| xx 100%=|(1.32447-1.33333)/1.32447| xx 100%=0.66908%`

Now,
`x_0=x_1=1.5`

`x_1=x_2=1.33333`

`x_2=x_3=1.32447`


`3^(rd)` iteration :

`f(x_0)=f(1.5)=(1.5)^(3)-1.5-1=0.875`

`f(x_1)=f(1.33333)=(1.33333)^(3)-1.33333-1=0.03704`

`f(x_2)=f(1.32447)=(1.32447)^(3)-1.32447-1=-0.00105`

`h_1=x_1-x_0=1.33333-1.5=-0.16667`

`h_2=x_2-x_1=1.32447-1.33333=-0.00886`

`delta_1=(f(x_1)-f(x_0))/h_1=(0.03704-0.875)/-0.16667=5.02778`

`delta_2=(f(x_2)-f(x_1))/h_2=(-0.00105-0.03704)/-0.00886=4.29796`

`a=(delta_2-delta_1)/(h_2+h_1)=(4.29796-5.02778)/(-0.00886+-0.16667)=4.1578`

`b=a xx h_2 + d_2=4.1578xx-0.00886+4.29796=4.26112`

`c=f(x_2)=-0.00105`

`x_3=x_2+(-2c)/(b +- sqrt(b^2-4ac))`

`x_3=x_2+(-2c)/(b +sign(b) sqrt(b^2-4ac))`

`=1.32447+(-2 xx -0.00105)/(4.26112 + sqrt(4.26112^2 - 4xx 4.1578 xx -0.00105))`

`=1.32447+(0.0021)/(4.26112 + sqrt(18.17461))`

`=1.32447+(0.0021)/(4.26112 + 4.26317)`

`=1.32472`

Relative percent error
`varepsilon_(a^3)=|(x_3-x_2)/x_3| xx 100%=|(1.32472-1.32447)/1.32472| xx 100%=0.01861%`


Approximate root of the equation `x^3-x-1=0` using Muller method is `1.32472`

`n``x_0``x_1``x_2``f(x_0)``f(x_1)``f(x_2)``a``b``c``x_3``varepsilon_(a^n`
1121.5-150.8754.560.8751.3333312.5
221.51.3333350.8750.037044.833334.222220.037041.324470.66908
31.51.333331.324470.8750.03704-0.001054.15784.26112-0.001051.324720.01861



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Secant method
(Previous method)
2. Example-2 `f(x)=2x^3-2x-5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.