Home > Statistical Methods calculators > Fitting exponential equation (y=ab^x) - Curve fitting example

5. Fitting exponential equation (y=ab^x) - Curve fitting example ( Enter your problem )
  1. Formula & Examples (taking log)
  2. Formula & Examples (taking ln)
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

1. Formula & Examples (taking log)
(Previous example)
6. Exponential equation `(y=ax^b)`
(Next method)

2. Formula & Examples (taking ln)





Formula
The exponential equation is `y=ab^x`
taking natural logarithm on both sides, we get

`ln(y)=ln(ab^x)`

`ln(y)=ln(a)+ln(b^x)`

`ln(y)=ln(a)+x ln(b)`

`Y=A+Bx` where `Y=ln(y), A=ln(a), B=ln(b)`

which linear in Y,x

So the corresponding normal equations are

`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`

Examples
1. Calculate Fitting exponential equation `(y=ab^x)` - Curve fitting using Least square method
XY
010
121
235
359
492
5200
6400
7610



Solution:
The curve to be fitted is `y=ab^x`

taking logarithm on both sides, we get
`ln(y)=ln(a)+x ln(b)`

`Y=A+Bx` where `Y=ln(y), A=ln(a), B=ln(b)`

which linear in Y,x
So the corresponding normal equations are
`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`


The values are calculated using the following table
`x``y``Y=ln(y)``x^2``x*Y`
0102.302600
1213.044513.0445
2353.555347.1107
3594.0775912.2326
4924.52181618.0872
52005.29832526.4916
64005.99153635.9488
76106.41354944.8942
---------------
`sum x=28``sum y=1427``sum Y=35.205``sum x^2=140``sum x*Y=147.8096`


Substituting these values in the normal equations
`8A+28B=35.205`

`28A+140B=147.8096`


Solving these two equations using Elimination method,

`8a+28b=35.205`

and `28a+140b=147.8096`

`:.28a+140b=147.81`

`8a+28b=35.205 ->(1)`

`28a+140b=147.8096 ->(2)`

equation`(1) xx 7 =>56a+196b=246.435`

equation`(2) xx 2 =>56a+280b=295.6192`

Substracting `=>-84b=-49.1842`

`=>84b=49.1842`

`=>b=49.1842/84`

`=>b=0.585526`

Putting `b=0.585526` in equation `(1)`, we have

`8a+28(0.585526)=35.205`

`=>8a=35.205-16.394733`

`=>8a=18.810267`

`=>a=18.810267/8`

`=>a=2.351283`

`:.a=2.351283" and "b=0.585526`


we obtain `A=2.3513,B=0.5855`

`:. a=antiln(A)=antiln(2.3513)=10.499`

and `b=antiln(B)=antiln(0.5855)=1.7959`

Now substituting this values in the equation is `y = a b^x`, we get

`y=10.499*(1.7959)^x`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Examples (taking log)
(Previous example)
6. Exponential equation `(y=ax^b)`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.