Home > Statistical Methods calculators > Fitting exponential equation (y=ax^b) - Curve fitting example

6. Fitting exponential equation (y=ax^b) - Curve fitting example ( Enter your problem )
  1. Formula & Examples (taking log)
  2. Formula & Examples (taking ln)
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

1. Formula & Examples (taking log)
(Previous example)

2. Formula & Examples (taking ln)





Formula
The exponential equation is `y=ax^b`
taking natural logarithm on both sides, we get

`ln(y)=ln(ax^b)`

`ln(y)=ln(a)+ln(x^b)`

`ln(y)=ln(a)+b ln(x)`

`Y=A+bX` where `Y=ln(y), A=ln(a), X=ln(x)`

which linear in Y,X

So the corresponding normal equations are

`sum Y = nA + b sum X`

`sum XY = A sum X + b sum X^2`

Examples
1. Calculate Fitting exponential equation `(y=ax^b)` - Curve fitting using Least square method
XY
227.8
362.1
4110
5161



Solution:
The curve to be fitted is `y=ax^b`

taking logarithm on both sides, we get
`ln(y)=ln(a)+b ln(x)`

`Y=A+bX` where `Y=ln(y), A=ln(a), X=ln(x)`

which linear in Y,X
So the corresponding normal equations are
`sum Y = nA + b sum X`

`sum XY = A sum X + b sum X^2`


The values are calculated using the following table
`x``y``X=ln(x)``Y=ln(y)``X^2``X*Y`
227.80.69313.3250.48052.3047
362.11.09864.12871.20694.5359
41101.38634.70051.92186.5162
51611.60945.08142.59038.1782
------------------
`sum x=14``sum y=360.9``sum X=4.7875``sum Y=17.2357``sum X^2=6.1995``sum X*Y=21.5351`


Substituting these values in the normal equations
`4A+4.7875b=17.2357`

`4.7875A+6.1995b=21.5351`


Solving these two equations using Elimination method,

`4a+4.7875b=17.2357`

and `4.7875a+6.1995b=21.5351`

`:.4.79a+6.2b=21.54`

`4a+4.7875b=17.2357 ->(1)`

`4.7875a+6.1995b=21.5351 ->(2)`

equation`(1) xx 4.7875 =>19.15a+22.920156b=82.515914`

equation`(2) xx 4 =>19.15a+24.798b=86.1404`

Substracting `=>-1.877844b=-3.624486`

`=>1.877844b=3.624486`

`=>b=3.624486/1.877844`

`=>b=1.930132`

Putting `b=1.930132` in equation `(1)`, we have

`4a+4.7875(1.930132)=17.2357`

`=>4a=17.2357-9.240507`

`=>4a=7.995193`

`=>a=7.995193/4`

`=>a=1.998798`

`:.a=1.998798" and "b=1.930132`


we obtain `A=1.9988,b=1.9301`

`:. a=antiln(A)=antiln(1.9988)=7.3802`

Now substituting this values in the equation is `y = a x^b`, we get

`y=7.3802*x^(1.9301)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Examples (taking log)
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.