Home > Statistical Methods calculators > t test example

8. Parametric test - t-test example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Non parametric test - Sign test
  2. Non parametric test - Mann whitney U test
  3. Non parametric test - Kruskal-wallis test
  4. Non parametric test - Chi square test
  5. Non parametric test - Median test
  6. Non parametric test - Mood's Median test
  7. Parametric test - F test
  8. Parametric test - t-test
  9. Parametric test - Standard error

1. Example-1
(Previous example)
9. Parametric test - Standard error
(Next method)

2. Example-2





2. Parametric test - t-test for the following data
2.9,3.1,3.5,3.4,3.0,4.0,3.7,3.0,4.0,4.0
2.7,2.8,3.0,3.5,3.7,3.2,3.0,3.1,2.9,2.8, Significance Level `alpha=0.05` and One-tailed test


Solution:
Step-1: Take the hypothesis
Null Hypothesis `H_0` : There is no significant differentiating between samples

Alternative Hypothesis `H_1` : There is significant differentiating between samples

Step-2: Calculate `S_1^2,S_2^2`

`bar x_1=3.46` and Variance `S_(1)^2=0.2004` for `2.9,3.1,3.5,3.4,3.0,4.0,3.7,3.0,4.0,4.0`


`x``x^2`
2.98.41
3.19.61
3.512.25
3.411.56
39
416
3.713.69
39
416
416
------
`sum x=34.6``sum x^2=121.52`


Mean `bar x = (sum x)/n`

`=(2.9 + 3.1 + 3.5 + 3.4 + 3 + 4 + 3.7 + 3 + 4 + 4)/10`

`=34.6/10`

`=3.46`



Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`

`=(121.52 - (34.6)^2/10)/9`

`=(121.52 - 119.716)/9`

`=1.804/9`

`=0.2004`



`bar x_2=3.07` and Variance `S_(2)^2=0.1023` for `2.7,2.8,3.0,3.5,3.7,3.2,3.0,3.1,2.9,2.8`


`x``x^2`
2.77.29
2.87.84
39
3.512.25
3.713.69
3.210.24
39
3.19.61
2.98.41
2.87.84
------
`sum x=30.7``sum x^2=95.17`


Mean `bar x = (sum x)/n`

`=(2.7 + 2.8 + 3 + 3.5 + 3.7 + 3.2 + 3 + 3.1 + 2.9 + 2.8)/10`

`=30.7/10`

`=3.07`



Sample Variance `S^2 = (sum x^2 - (sum x)^2/n)/(n-1)`

`=(95.17 - (30.7)^2/10)/9`

`=(95.17 - 94.249)/9`

`=0.921/9`

`=0.1023`



Step-3: Calculate `t`

`t=|x_1-x_2|/sqrt((S_1^2)/n_1 + (S_2^2)/n_2)`

`=|3.46-3.07|/sqrt(0.2004/10 + 0.1023/10)`

`=|0.39|/sqrt(0.02 + 0.0102)`

`=|0.39|/sqrt(0.0303)`

`=|0.39|/0.174`

`=2.2416`

Step-4:
Degree of freedom `= n_1 + n_2 - 2 = 10+10-2=18`

Step-5:
`df=18,t_(0.05)=1.7341`

As calculated `t=2.2416 > 1.7341`

So, `H_0` is rejected.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1
(Previous example)
9. Parametric test - Standard error
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.