1. Chinese Remainder Theorem example ( Enter your problem )
  1. Example-1 : x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)
  2. Example-2 : x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
  3. Example-3 : 2x=5 (mod 7),3x=4 (mod 8)
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

2. Example-2 : x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
(Next example)

1. Example-1 : x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)





1. Chinese Remainder Theorem to solve `x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)`

Solution:
`x-=2\ ("mod "5)->(1)`

`x-=3\ ("mod "7)->(2)`

`x-=10\ ("mod "11)->(3)`

`a_1=2,a_2=3,a_3=10`

`n_1=5,n_2=7,n_3=11`

Check if each `n_i` is pairwise coprime

`GCD(5,7)=1`

`GCD(5,11)=1`


`GCD(7,11)=1`


since all gcd is 1, so each `n_i` is pairwise coprime

There is a unique solution modulo N
`N=n_1*n_2*n_3=5*7*11=385`

Step-1: `z_i = N / n_i`

`z_1 = N / n_1=385/5=77`

`z_2 = N / n_2=385/7=55`

`z_3 = N / n_3=385/11=35`

Step-2: find `y_i-=z_i^(-1)\ ("mod " n_i)` using Extended Euclidean Algorithm

`y_1-=z_1^(-1)\ ("mod "n_1)-=77^(-1)\ ("mod "5)-=2^(-1)\ ("mod "5)-=-2\ ("mod "5)`

`t=-2`


iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1510
27701
3`5-:77=0``5-0xx77=5``1-0xx0=1``0-0xx1=0`
4`77-:5=15``77-15xx5=2``0-15xx1=-15``1-15xx0=1`
5`5-:2=2``5-2xx2=1``1-2xx-15=31``0-2xx1=-2`
6`2-:1=2``2-2xx1=0``-15-2xx31=-77``1-2xx-2=5`


we get answer by taking the last non-zero row for Remainder r, `t=-2`


`y_2-=z_2^(-1)\ ("mod "n_2)-=55^(-1)\ ("mod "7)-=6^(-1)\ ("mod "7)-=-1\ ("mod "7)`

`t=-1`


iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
1710
25501
3`7-:55=0``7-0xx55=7``1-0xx0=1``0-0xx1=0`
4`55-:7=7``55-7xx7=6``0-7xx1=-7``1-7xx0=1`
5`7-:6=1``7-1xx6=1``1-1xx-7=8``0-1xx1=-1`
6`6-:1=6``6-6xx1=0``-7-6xx8=-55``1-6xx-1=7`


we get answer by taking the last non-zero row for Remainder r, `t=-1`


`y_3-=z_3^(-1)\ ("mod "n_3)-=35^(-1)\ ("mod "11)-=2^(-1)\ ("mod "11)-=-5\ ("mod "11)`

`t=-5`


iQuotient
`q=r_1-:r_2`
Remainder
`r=r_1-q*r_2`
 
`s=s_1-q*s_2`
`t=t_1-q*t_2`
11110
23501
3`11-:35=0``11-0xx35=11``1-0xx0=1``0-0xx1=0`
4`35-:11=3``35-3xx11=2``0-3xx1=-3``1-3xx0=1`
5`11-:2=5``11-5xx2=1``1-5xx-3=16``0-5xx1=-5`
6`2-:1=2``2-2xx1=0``-3-2xx16=-35``1-2xx-5=11`


we get answer by taking the last non-zero row for Remainder r, `t=-5`


Step-3: The solution, which is unique modulo 385, is
`x-=a_1*y_1*z_1+a_2*y_2*z_2+a_3*y_3*z_3\ ("mod "385)`

`:.x-=2*-2*77+3*-1*55+10*-5*35\ ("mod "385)`

`:.x-=-308-165-1750\ ("mod "385)`

`:.x-=-2223\ ("mod "385)`

`:.x-=87\ ("mod "385)`



Method-2: Successive substitution method
`x-=2\ ("mod "5)->(1)`

`x-=3\ ("mod "7)->(2)`

`x-=10\ ("mod "11)->(3)`

from (1)
`x-=2\ ("mod "5)`

Hence `x=2+5a`

Now from (2), `x-=3\ ("mod "7)`

`:. (2+5a)-=3\ ("mod "7)`

`:. 5a-=1\ ("mod "7)`

Here `5^(-1)-=3\ ("mod "7)`

`:. 3xx5a-=3xx1\ ("mod "7)`

`:. 15a-=3\ ("mod "7)`

`:. a-=3\ ("mod "7)`

Hence `a=3+7b`

But `x=2+5a`

`:.x=2+5(3+7b)`

`:.x=2+15+35b`

`:.x=17+35b`

Now from (3), `x-=10\ ("mod "11)`

`:. (17+35b)-=10\ ("mod "11)`

`:. 6+2b-=10\ ("mod "11)`

`:. 2b-=4\ ("mod "11)`

Here `2^(-1)-=6\ ("mod "11)`

`:. 6xx2b-=6xx4\ ("mod "11)`

`:. 12b-=24\ ("mod "11)`

`:. b-=2\ ("mod "11)`

Hence `b=2+11c`

But `x=17+35b`

`:.x=17+35(2+11c)`

`:.x=17+70+385c`

`:.x=87+385c`

`:.x-=87\ ("mod "385)`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2 : x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.