Home > Calculus calculators > Powers of complex numbers example

14. Powers of complex numbers example ( Enter your problem )
  1. Example-1
Other related methods
  1. Adding complex numbers
  2. Subtracting complex numbers
  3. Multiplying complex numbers
  4. Dividing complex numbers
  5. Real part of complex number
  6. Imaginary part of complex number
  7. Conjugate of complex number
  8. Magnitude (Modulus) of complex numbers
  9. Multiplicative inverse of complex numbers
  10. Reciprocal of complex number
  11. Argument of complex number
  12. Polar form of complex numbers
  13. Square root of complex number
  14. Powers of complex numbers
  15. Roots of complex numbers

13. Square root of complex number
(Previous method)
15. Roots of complex numbers
(Next method)

1. Example-1





1. `A=5+6i,B=-2+3i,C=1-3i`
Find pow(A,6)


Solution:
Here `A=5+6i,B=-2+3i,C=1-3i`


For a complex number `z=a+bi`, the polar form is `z=r*(cos(theta)+i*sin(theta))`

then power of n of given complex number can be obtained by
`z^n=[r*(cos(theta)+i*sin(theta))]^n=r^n*[cos(n*theta)+i*sin(n*theta)]`


Step-1: Convert to exponential form: `z = re^(i theta)`

Here, `a=5` and `b=6`

`:. r=sqrt(5^2+6^2)=sqrt(25+36)=sqrt(61)=7.8102`

`theta=atan(b/a)` (Since `a>0`)

`:. theta=atan((6)/(5))`

`:. theta=atan(1.2)`

`:. theta=50.1944 ^circ` or `theta=0.8761` rad

`:. theta=0.8761`

Exponential form:
`5+6i=r*e^(i*theta)`

`5+6i=7.8102*e^(i(0.8761))`

Step-2: Apply the power formula
Now `(5+6i)^(6)=(7.8102)^(6)*e^(i(6*0.8761))`

`=226981*e^(i(5.2563))`

Step-3: Convert back to rectangular form
`=226981*(cos(5.2563)+isin(5.2563))`

`=226981*(0.5175-0.8557i)`

`=117469-194220i`
2. `A=5+6i,B=-2+3i,C=1-3i`
Find pow(B,4)


Solution:
Here `A=5+6i,B=-2+3i,C=1-3i`


For a complex number `z=a+bi`, the polar form is `z=r*(cos(theta)+i*sin(theta))`

then power of n of given complex number can be obtained by
`z^n=[r*(cos(theta)+i*sin(theta))]^n=r^n*[cos(n*theta)+i*sin(n*theta)]`


Step-1: Convert to exponential form: `z = re^(i theta)`

Here, `a=-2` and `b=3`

`:. r=sqrt((-2)^2+3^2)=sqrt(4+9)=sqrt(13)=3.6056`

`theta=atan(b/a)+180` (Since `a<0`)

`:. theta=atan((3)/(-2))+180`

`:. theta=atan(-1.5)+180`

`:. theta=-56.3099+180`

`:. theta=123.6901 ^circ` or `theta=2.1588` rad

`:. theta=2.1588`

Exponential form:
`-2+3i=r*e^(i*theta)`

`-2+3i=3.6056*e^(i(2.1588))`

Step-2: Apply the power formula
Now `(-2+3i)^(4)=(3.6056)^(4)*e^(i(4*2.1588))`

`=169*e^(i(8.6352))`

Step-3: Convert back to rectangular form
`=169*(cos(8.6352)+isin(8.6352))`

`=169*(-0.7041+0.7101i)`

`=-119+120i`
3. `A=5+6i,B=-2+3i,C=1-3i`
Find pow(C,3)


Solution:
Here `A=5+6i,B=-2+3i,C=1-3i`


For a complex number `z=a+bi`, the polar form is `z=r*(cos(theta)+i*sin(theta))`

then power of n of given complex number can be obtained by
`z^n=[r*(cos(theta)+i*sin(theta))]^n=r^n*[cos(n*theta)+i*sin(n*theta)]`


Step-1: Convert to exponential form: `z = re^(i theta)`

Here, `a=1` and `b=-3`

`:. r=sqrt(1^2+(-3)^2)=sqrt(1+9)=sqrt(10)=3.1623`

`theta=atan(b/a)` (Since `a>0`)

`:. theta=atan((-3)/(1))`

`:. theta=atan(-3)`

`:. theta=-71.5651 ^circ` or `theta=-1.249` rad

`:. theta=-1.249`

Exponential form:
`1-3i=r*e^(i*theta)`

`1-3i=3.1623*e^(i(-1.249))`

Step-2: Apply the power formula
Now `(1-3i)^(3)=(3.1623)^(3)*e^(i(3*-1.249))`

`=31.6228*e^(i(-3.7471))`

Step-3: Convert back to rectangular form
`=31.6228*(cos(-3.7471)+isin(-3.7471))`

`=31.6228*(-0.8222+0.5692i)`

`=-26+18i`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



13. Square root of complex number
(Previous method)
15. Roots of complex numbers
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.