1. Find Laspeyre's index number, Paasche's index number, Fisher's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
Rice | 39 | 1 | 40 | 1.5 |
Milk | 40 | 12 | 44 | 10 |
Bread | 45 | 2 | 50 | 1.5 |
Banana | 30 | 2 | 36 | 1.5 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `p_1q_0` | `p_0q_0` | `p_1q_1` | `p_0q_1` |
Rice | 39 | 1 | 40 | 1.5 | 40 | 39 | 60 | 58.5 |
Milk | 40 | 12 | 44 | 10 | 528 | 480 | 440 | 400 |
Bread | 45 | 2 | 50 | 1.5 | 100 | 90 | 75 | 67.5 |
Banana | 30 | 2 | 36 | 1.5 | 72 | 60 | 54 | 45 |
--- | --- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | `740` | `669` | `629` | `571` |
1. Laspeyre's index number
`I_L=(sum p_1q_0)/(sum p_0q_0) xx 100`
`=(740)/(669) xx 100`
`=110.61`
Thus, there is a rise of `(110.61-100)=10.61%` in prices
2. Paasche's index number
`I_P=(sum p_1q_1)/(sum p_0q_1) xx 100`
`=(629)/(571) xx 100`
`=110.16`
Thus, there is a rise of `(110.16-100)=10.16%` in prices
3. Fisher's index number
`I_F=sqrt(I_L xx I_P)`
`=sqrt(110.6129 xx 110.1576)`
`=110.39`
Thus, there is a rise of `(110.39-100)=10.39%` in prices
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then