1. Find Marshall Edgeworth's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
Rice | 39 | 1 | 40 | 1.5 |
Milk | 40 | 12 | 44 | 10 |
Bread | 45 | 2 | 50 | 1.5 |
Banana | 30 | 2 | 36 | 1.5 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `p_1q_0` | `p_0q_0` | `p_1q_1` | `p_0q_1` |
Rice | 39 | 1 | 40 | 1.5 | 40 | 39 | 60 | 58.5 |
Milk | 40 | 12 | 44 | 10 | 528 | 480 | 440 | 400 |
Bread | 45 | 2 | 50 | 1.5 | 100 | 90 | 75 | 67.5 |
Banana | 30 | 2 | 36 | 1.5 | 72 | 60 | 54 | 45 |
--- | --- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | `740` | `669` | `629` | `571` |
1. Marshall Edgeworth index number
`I_M=(sum p_1q_0+sum p_1q_1)/(sum p_0q_0+sum p_0q_1) xx 100`
`=(740+629)/(669+571) xx 100`
`=(1369)/(1240) xx 100`
`=110.4`
Thus, there is a rise of `(110.4-100)=10.4%` in prices
2. Find Marshall Edgeworth's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
A | 10 | 20 | 12 | 22 |
B | 8 | 16 | 8 | 18 |
C | 5 | 10 | 6 | 11 |
D | 4 | 7 | 4 | 8 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `p_1q_0` | `p_0q_0` | `p_1q_1` | `p_0q_1` |
A | 10 | 20 | 12 | 22 | 240 | 200 | 264 | 220 |
B | 8 | 16 | 8 | 18 | 128 | 128 | 144 | 144 |
C | 5 | 10 | 6 | 11 | 60 | 50 | 66 | 55 |
D | 4 | 7 | 4 | 8 | 28 | 28 | 32 | 32 |
--- | --- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | `456` | `406` | `506` | `451` |
1. Marshall Edgeworth index number
`I_M=(sum p_1q_0+sum p_1q_1)/(sum p_0q_0+sum p_0q_1) xx 100`
`=(456+506)/(406+451) xx 100`
`=(962)/(857) xx 100`
`=112.25`
Thus, there is a rise of `(112.25-100)=12.25%` in prices
3. Find Marshall Edgeworth's index number
Item | Price0 | Quantity0 | Price1 | Quantity1 |
A | 3 | 25 | 5 | 28 |
B | 1 | 50 | 3 | 60 |
C | 2 | 30 | 1 | 30 |
D | 5 | 15 | 6 | 12 |
Solution:
Item | `p_0` | `q_0` | `p_1` | `q_1` | `p_1q_0` | `p_0q_0` | `p_1q_1` | `p_0q_1` |
A | 3 | 25 | 5 | 28 | 125 | 75 | 140 | 84 |
B | 1 | 50 | 3 | 60 | 150 | 50 | 180 | 60 |
C | 2 | 30 | 1 | 30 | 30 | 60 | 30 | 60 |
D | 5 | 15 | 6 | 12 | 90 | 75 | 72 | 60 |
--- | --- | --- | --- | --- | --- | --- | --- | --- |
Total | | | | | `395` | `260` | `422` | `264` |
1. Marshall Edgeworth index number
`I_M=(sum p_1q_0+sum p_1q_1)/(sum p_0q_0+sum p_0q_1) xx 100`
`=(395+422)/(260+264) xx 100`
`=(817)/(524) xx 100`
`=155.92`
Thus, there is a rise of `(155.92-100)=55.92%` in prices
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then