Home > Pre-Algebra calculators > Find the next number in the sequence example

1. Number Series example ( Enter your problem )
  1. Number series using difference table
  2. Multiplication type series
  3. Mixed type series (*a+b)
  4. Square, Cube, Power series
  5. Combination of 2 or 3 or 4 series
  6. Previous 2 or 3 terms addition, multiplicaiton series
  7. Prime numbers series
  8. Prime numbers addition, multiplicaiton series
  9. 2 or 3 digits group series
  10. `n^3-n^2` type series
  11. Reverse of the square, cube, prime type series
  12. Each number digits are `a^2b^2` format
  13. Special series-1
  14. Special series-2
  15. `x^2,x^3` alternate type series
  16. 3 or 4 term repeat series
  17. Number Pattern series
  18. Multiplication by `1/2,1/3` type series
  19. `a/b` pattern series
  20. Special series-3
Other related methods
  1. Number Series
  2. Alphabate series
  3. Missing Letter Series

11. Reverse of the square, cube, prime type series
(Previous example)
13. Special series-1
(Next example)

12. Each number digits are `a^2b^2` format





1. Find next 3 numbers in the sequence `01,14,49,916,1625,2536`

`01=(0^2)(1^2)=(0)(1)=01`

`14=(1^2)(2^2)=(1)(4)=14`

`49=(2^2)(3^2)=(4)(9)=49`

`916=(3^2)(4^2)=(9)(16)=916`

`1625=(4^2)(5^2)=(16)(25)=1625`

`2536=(5^2)(6^2)=(25)(36)=2536`

So required number are
`3649=(6^2)(7^2)=(36)(49)=3649`

`4964=(7^2)(8^2)=(49)(64)=4964`

`6481=(8^2)(9^2)=(64)(81)=6481`

`:.` The next 3 number for given series `1,14,49,916,1625,2536` are `3649,4964,6481`

Solution-1


2. Find next 3 numbers in the sequence `10,41,94,169,2516,3625`

`10=(1^2)(0^2)=(1)(0)=10`

`41=(2^2)(1^2)=(4)(1)=41`

`94=(3^2)(2^2)=(9)(4)=94`

`169=(4^2)(3^2)=(16)(9)=169`

`2516=(5^2)(4^2)=(25)(16)=2516`

`3625=(6^2)(5^2)=(36)(25)=3625`

So required number are
`4936=(7^2)(6^2)=(49)(36)=4936`

`6449=(8^2)(7^2)=(64)(49)=6449`

`8164=(9^2)(8^2)=(81)(64)=8164`

`:.` The next 3 number for given series `10,41,94,169,2516,3625` are `4936,6449,8164`

Solution-1


3. Find next 3 numbers in the sequence `49,1625,3649`

`49=(2^2)(3^2)=(4)(9)=49`

`1625=(4^2)(5^2)=(16)(25)=1625`

`3649=(6^2)(7^2)=(36)(49)=3649`

So required number are
`6481=(8^2)(9^2)=(64)(81)=6481`

`100121=(10^2)(11^2)=(100)(121)=100121`

`144169=(12^2)(13^2)=(144)(169)=144169`

`:.` The next 3 number for given series `49,1625,3649` are `6481,100121,144169`

Solution-1


4. Find next 3 numbers in the sequence `49,925,2549,49121`

`49=(2^2)(3^2)=(4)(9)=49`

`925=(3^2)(5^2)=(9)(25)=925`

`2549=(5^2)(7^2)=(25)(49)=2549`

`49121=(7^2)(11^2)=(49)(121)=49121`

So required number are
`121169=(11^2)(13^2)=(121)(169)=121169`

`169289=(13^2)(17^2)=(169)(289)=169289`

`289361=(17^2)(19^2)=(289)(361)=289361`

`:.` The next 3 number for given series `49,925,2549,49121` are `121169,169289,289361`

Solution-1


5. Find next 3 numbers in the sequence `11,24,39,416,525`

`11=(1)(1^2)=(1)(1)=11`

`24=(2)(2^2)=(2)(4)=24`

`39=(3)(3^2)=(3)(9)=39`

`416=(4)(4^2)=(4)(16)=416`

`525=(5)(5^2)=(5)(25)=525`

So required number are
`636=(6)(6^2)=(6)(36)=636`

`749=(7)(7^2)=(7)(49)=749`

`864=(8)(8^2)=(8)(64)=864`

`:.` The next 3 number for given series `11,24,39,416,525` are `636,749,864`

Solution-1


6. Find next 3 numbers in the sequence `11,48,927,1664,25125`

`11=(1^2)(1^3)=(1)(1)=11`

`48=(2^2)(2^3)=(4)(8)=48`

`927=(3^2)(3^3)=(9)(27)=927`

`1664=(4^2)(4^3)=(16)(64)=1664`

`25125=(5^2)(5^3)=(25)(125)=25125`

So required number are
`36216=(6^2)(6^3)=(36)(216)=36216`

`49343=(7^2)(7^3)=(49)(343)=49343`

`64512=(8^2)(8^3)=(64)(512)=64512`

`:.` The next 3 number for given series `11,48,927,1664,25125` are `36216,49343,64512`

Solution-1




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



11. Reverse of the square, cube, prime type series
(Previous example)
13. Special series-1
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.