3. Calculate Deciles-3 from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:| Class | Frequency `f` | `cf` |
| 2 - 4 | 3 | 3 |
| 4 - 6 | 4 | 7 |
| 6 - 8 | 2 | 9 |
| 8 - 10 | 1 | 10 |
| --- | --- | --- |
| n = 10 | -- |
Here, `n = 10`
`D_3` class :
Class with `((3n)/10)^(th)` value of the observation in `cf` column
`=((3*10)/10)^(th)` value of the observation in `cf` column
`=(3)^(th)` value of the observation in `cf` column
and it lies in the class `2 - 4`.
`:. D_3` class : `2 - 4`
The lower boundary point of `2 - 4` is `2`.
`:. L = 2`
`D_3 = L + ((3 n)/10 - cf)/f * c`
`=2 + (3 - 0)/3 * 2`
`=2 + (3)/3 * 2`
`=2 + 2`
`=4`
4. Calculate Deciles-7 from the following grouped data
| Class | Frequency |
| 0 - 2 | 5 |
| 2 - 4 | 16 |
| 4 - 6 | 13 |
| 6 - 8 | 7 |
| 8 - 10 | 5 |
| 10 - 12 | 4 |
Solution:| Class | Frequency `f` | `cf` |
| 0 - 2 | 5 | 5 |
| 2 - 4 | 16 | 21 |
| 4 - 6 | 13 | 34 |
| 6 - 8 | 7 | 41 |
| 8 - 10 | 5 | 46 |
| 10 - 12 | 4 | 50 |
| --- | --- | --- |
| n = 50 | -- |
Here, `n = 50`
`D_7` class :
Class with `((7n)/10)^(th)` value of the observation in `cf` column
`=((7*50)/10)^(th)` value of the observation in `cf` column
`=(35)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. D_7` class : `6 - 8`
The lower boundary point of `6 - 8` is `6`.
`:. L = 6`
`D_7 = L + ((7 n)/10 - cf)/f * c`
`=6 + (35 - 34)/7 * 2`
`=6 + (1)/7 * 2`
`=6 + 0.2857`
`=6.2857`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then