5. Calculate Percentiles-20 from the following grouped data
| Class | Frequency |
| 10 - 20 | 15 |
| 20 - 30 | 25 |
| 30 - 40 | 20 |
| 40 - 50 | 12 |
| 50 - 60 | 8 |
| 60 - 70 | 5 |
| 70 - 80 | 3 |
Solution:| Class | Frequency `f` | `cf` |
| 10 - 20 | 15 | 15 |
| 20 - 30 | 25 | 40 |
| 30 - 40 | 20 | 60 |
| 40 - 50 | 12 | 72 |
| 50 - 60 | 8 | 80 |
| 60 - 70 | 5 | 85 |
| 70 - 80 | 3 | 88 |
| --- | --- | --- |
| n = 88 | -- |
Here, `n = 88`
`P_20` class :
Class with `((20n)/100)^(th)` value of the observation in `cf` column
`=((20*88)/100)^(th)` value of the observation in `cf` column
`=(17.6)^(th)` value of the observation in `cf` column
and it lies in the class `20 - 30`.
`:. P_20` class : `20 - 30`
The lower boundary point of `20 - 30` is `20`.
`:. L = 20`
`P_20 = L + ((20 n)/100 - cf)/f * c`
`=20 + (17.6 - 15)/25 * 10`
`=20 + (2.6)/25 * 10`
`=20 + 1.04`
`=21.04`
6. Calculate Percentiles-70 from the following grouped data
| Class | Frequency |
| 20 - 25 | 110 |
| 25 - 30 | 170 |
| 30 - 35 | 80 |
| 35 - 40 | 45 |
| 40 - 45 | 40 |
| 45 - 50 | 35 |
Solution:| Class | Frequency `f` | `cf` |
| 20 - 25 | 110 | 110 |
| 25 - 30 | 170 | 280 |
| 30 - 35 | 80 | 360 |
| 35 - 40 | 45 | 405 |
| 40 - 45 | 40 | 445 |
| 45 - 50 | 35 | 480 |
| --- | --- | --- |
| n = 480 | -- |
Here, `n = 480`
`P_70` class :
Class with `((70n)/100)^(th)` value of the observation in `cf` column
`=((70*480)/100)^(th)` value of the observation in `cf` column
`=(336)^(th)` value of the observation in `cf` column
and it lies in the class `30 - 35`.
`:. P_70` class : `30 - 35`
The lower boundary point of `30 - 35` is `30`.
`:. L = 30`
`P_70 = L + ((70 n)/100 - cf)/f * c`
`=30 + (336 - 280)/80 * 5`
`=30 + (56)/80 * 5`
`=30 + 3.5`
`=33.5`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then