Home > Statistical Methods calculators > Population Skewness, Kurtosis for grouped data example

Population Skewness, Kurtosis for grouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Population Skewness Example
  3. Population Kurtosis Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Mode using Grouping Method
  12. Less than type Cumulative frequency table
  13. More than type Cumulative frequency table
  14. Class and their frequency table

4. Sample Variance, Standard deviation and coefficient of variation
(Previous method)
2. Population Skewness Example
(Next example)

1. Formula & Example





Formula
1. Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
2. Skewness `= (sum(x - bar x)^3)/(n*S^3)`
3. Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`

Examples
1. Calculate Population Skewness, Population Kurtosis from the following grouped data
ClassFrequency
2 - 43
4 - 64
6 - 82
8 - 101


Solution:
Mean `bar x=(sum f x)/(sum f)`

`=52/10`

`=5.2`

Class
`(1)`
Mid value (`x`)
`(2)`
`f`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`(x-bar x)`
`(5)`
`f*(x-bar x)^2`
`(6)=(3)xx(5)`
`f*(x-bar x)^3`
`(7)=(5)xx(6)`
2 - 4 3 `3=(2+4)/2`3 9 `9=3xx3`
`(4)=(2)xx(3)`
 -2.2 `|3-5.2|=-2.2`
`|x - 5.2|`
 14.52 `14.52=3xx-2.2xx-2.2`
`(6)=(2)xx(5)`
 -31.944 `-31.944=14.52xx-2.2`
`(7)=(2)xx(6)`
4 - 6 5 `5=(4+6)/2`4 20 `20=4xx5`
`(4)=(2)xx(3)`
 -0.2 `|5-5.2|=-0.2`
`|x - 5.2|`
 0.16 `0.16=4xx-0.2xx-0.2`
`(6)=(2)xx(5)`
 -0.032 `-0.032=0.16xx-0.2`
`(7)=(2)xx(6)`
6 - 8 7 `7=(6+8)/2`2 14 `14=2xx7`
`(4)=(2)xx(3)`
 1.8 `|7-5.2|=1.8`
`|x - 5.2|`
 6.48 `6.48=2xx1.8xx1.8`
`(6)=(2)xx(5)`
 11.664 `11.664=6.48xx1.8`
`(7)=(2)xx(6)`
8 - 10 9 `9=(8+10)/2`1 9 `9=1xx9`
`(4)=(2)xx(3)`
 3.8 `|9-5.2|=3.8`
`|x - 5.2|`
 14.44 `14.44=1xx3.8xx3.8`
`(6)=(2)xx(5)`
 54.872 `54.872=14.44xx3.8`
`(7)=(2)xx(6)`
---------------------
----`n=10``sum f*x=52``--`=35.6``=34.56`


Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(35.6/10)`

`=sqrt(3.56)`

`=1.8868`



Skewness `= (sum(x - bar x)^3)/(n*S^3)`

`=34.56/(10*(1.8868)^3)`

`=34.56/(10*6.717)`

`=0.5145`



Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`

`=299.792/(10*(1.8868)^4)`

`=299.792/(10*12.6736)`

`=2.3655`
2. Calculate Population Skewness, Population Kurtosis from the following grouped data
XFrequency
01
15
210
36
43


Solution:
Mean `bar x=(sum f x)/n`

`=55/25`

`=2.2`

`x`
`(2)`
`f`
`(3)`
`f*x`
`(4)=(2)xx(3)`
`(x-bar x)`
`(5)`
`f*(x-bar x)^2`
`(6)=(3)xx(5)`
`f*(x-bar x)^3`
`(7)=(5)xx(6)`
01 0 `0=1xx0`
`(4)=(2)xx(3)`
 -2.2 `|0-2.2|=-2.2`
`|x - 2.2|`
 4.84 `4.84=1xx-2.2xx-2.2`
`(6)=(2)xx(5)`
 -10.648 `-10.648=4.84xx-2.2`
`(7)=(2)xx(6)`
15 5 `5=5xx1`
`(4)=(2)xx(3)`
 -1.2 `|1-2.2|=-1.2`
`|x - 2.2|`
 7.2 `7.2=5xx-1.2xx-1.2`
`(6)=(2)xx(5)`
 -8.64 `-8.64=7.2xx-1.2`
`(7)=(2)xx(6)`
210 20 `20=10xx2`
`(4)=(2)xx(3)`
 -0.2 `|2-2.2|=-0.2`
`|x - 2.2|`
 0.4 `0.4=10xx-0.2xx-0.2`
`(6)=(2)xx(5)`
 -0.08 `-0.08=0.4xx-0.2`
`(7)=(2)xx(6)`
36 18 `18=6xx3`
`(4)=(2)xx(3)`
 0.8 `|3-2.2|=0.8`
`|x - 2.2|`
 3.84 `3.84=6xx0.8xx0.8`
`(6)=(2)xx(5)`
 3.072 `3.072=3.84xx0.8`
`(7)=(2)xx(6)`
43 12 `12=3xx4`
`(4)=(2)xx(3)`
 1.8 `|4-2.2|=1.8`
`|x - 2.2|`
 9.72 `9.72=3xx1.8xx1.8`
`(6)=(2)xx(5)`
 17.496 `17.496=9.72xx1.8`
`(7)=(2)xx(6)`
------------------
--`n=25``sum f*x=55``--`=26``=1.2`


Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(26/25)`

`=sqrt(1.04)`

`=1.0198`



Skewness `= (sum(x - bar x)^3)/(n*S^3)`

`=1.2/(25*(1.0198)^3)`

`=1.2/(25*1.0606)`

`=0.0453`



Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`

`=67.76/(25*(1.0198)^4)`

`=67.76/(25*1.0816)`

`=2.5059`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Sample Variance, Standard deviation and coefficient of variation
(Previous method)
2. Population Skewness Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.