1. Calculate Population Kurtosis from the following grouped data
Solution:
Kurtosis :
Mean `bar x=(sum f x)/n`
`=55/25`
`=2.2`
`x` `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)^2` `(6)=(3)xx(5)` | `f*(x-bar x)^3` `(7)=(5)xx(6)` | `f*(x-bar x)^4` `(8)=(5)xx(7)` |
0 | 1 | 0 | -2.2 | 4.84 | -10.648 | 23.4256 |
1 | 5 | 5 | -1.2 | 7.2 | -8.64 | 10.368 |
2 | 10 | 20 | -0.2 | 0.4 | -0.08 | 0.016 |
3 | 6 | 18 | 0.8 | 3.84 | 3.072 | 2.4576 |
4 | 3 | 12 | 1.8 | 9.72 | 17.496 | 31.4928 |
--- | --- | --- | --- | --- | --- | --- |
-- | `n=25` | `sum f*x=55` | `-- | `=26` | `=1.2` | `=67.76` |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(26/25)`
`=sqrt(1.04)`
`=1.0198`
Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`
`=67.76/(25*(1.0198)^4)`
`=67.76/(25*1.0816)`
`=2.5059`
2. Calculate Population Kurtosis from the following grouped data
X | Frequency |
10 | 3 |
11 | 12 |
12 | 18 |
13 | 12 |
14 | 3 |
Solution:
Kurtosis :
Mean `bar x=(sum f x)/n`
`=576/48`
`=12`
`x` `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)^2` `(6)=(3)xx(5)` | `f*(x-bar x)^3` `(7)=(5)xx(6)` | `f*(x-bar x)^4` `(8)=(5)xx(7)` |
10 | 3 | 30 | -2 | 12 | -24 | 48 |
11 | 12 | 132 | -1 | 12 | -12 | 12 |
12 | 18 | 216 | 0 | 0 | 0 | 0 |
13 | 12 | 156 | 1 | 12 | 12 | 12 |
14 | 3 | 42 | 2 | 12 | 24 | 48 |
--- | --- | --- | --- | --- | --- | --- |
-- | `n=48` | `sum f*x=576` | `-- | `=48` | `=0` | `=120` |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(48/48)`
`=sqrt(1)`
`=1`
Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`
`=120/(48*(1)^4)`
`=120/(48*1)`
`=2.5`
3. Calculate Population Kurtosis from the following grouped data
Class | Frequency |
2 - 4 | 3 |
4 - 6 | 4 |
6 - 8 | 2 |
8 - 10 | 1 |
Solution:
Kurtosis :
Mean `bar x=(sum f x)/(sum f)`
`=52/10`
`=5.2`
Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)^2` `(6)=(3)xx(5)` | `f*(x-bar x)^3` `(7)=(5)xx(6)` | `f*(x-bar x)^4` `(8)=(5)xx(7)` |
2 - 4 | 3 | 3 | 9 | -2.2 | 14.52 | -31.944 | 70.2768 |
4 - 6 | 5 | 4 | 20 | -0.2 | 0.16 | -0.032 | 0.0064 |
6 - 8 | 7 | 2 | 14 | 1.8 | 6.48 | 11.664 | 20.9952 |
8 - 10 | 9 | 1 | 9 | 3.8 | 14.44 | 54.872 | 208.5136 |
--- | --- | --- | --- | --- | --- | --- | --- |
-- | -- | `n=10` | `sum f*x=52` | `-- | `=35.6` | `=34.56` | `=299.792` |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(35.6/10)`
`=sqrt(3.56)`
`=1.8868`
Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`
`=299.792/(10*(1.8868)^4)`
`=299.792/(10*12.6736)`
`=2.3655`
4. Calculate Population Kurtosis from the following grouped data
Class | Frequency |
0 - 2 | 5 |
2 - 4 | 16 |
4 - 6 | 13 |
6 - 8 | 7 |
8 - 10 | 5 |
10 - 12 | 4 |
Solution:
Kurtosis :
Mean `bar x=(sum f x)/(sum f)`
`=256/50`
`=5.12`
Class `(1)` | Mid value (`x`) `(2)` | `f` `(3)` | `f*x` `(4)=(2)xx(3)` | `(x-bar x)` `(5)` | `f*(x-bar x)^2` `(6)=(3)xx(5)` | `f*(x-bar x)^3` `(7)=(5)xx(6)` | `f*(x-bar x)^4` `(8)=(5)xx(7)` |
0 - 2 | 1 | 5 | 5 | -4.12 | 84.872 | -349.6726 | 1440.6513 |
2 - 4 | 3 | 16 | 48 | -2.12 | 71.9104 | -152.45 | 323.1941 |
4 - 6 | 5 | 13 | 65 | -0.12 | 0.1872 | -0.0225 | 0.0027 |
6 - 8 | 7 | 7 | 49 | 1.88 | 24.7408 | 46.5127 | 87.4439 |
8 - 10 | 9 | 5 | 45 | 3.88 | 75.272 | 292.0554 | 1133.1748 |
10 - 12 | 11 | 4 | 44 | 5.88 | 138.2976 | 813.1899 | 4781.5565 |
--- | --- | --- | --- | --- | --- | --- | --- |
-- | -- | `n=50` | `sum f*x=256` | `-- | `=395.28` | `=649.6128` | `=7766.0233` |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(395.28/50)`
`=sqrt(7.9056)`
`=2.8117`
Population Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`
`=7766.0233/(50*(2.8117)^4)`
`=7766.0233/(50*62.4985)`
`=2.4852`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then