4. Calculate Mean deviation, Coefficient of M.D. from the following grouped data
Class | Frequency |
10 - 20 | 15 |
20 - 30 | 25 |
30 - 40 | 20 |
40 - 50 | 12 |
50 - 60 | 8 |
60 - 70 | 5 |
70 - 80 | 3 |
Solution:Mean deviation :Mean `bar x=(sum f x)/(sum f)`
`=3080/88`
`=35`
Class `(1)` | `f` `(2)` | Mid value (`x`) `(3)` | `f*x` `(4)=(2)xx(3)` | `|x-bar x|=|x-35|` `(5)` | `f*|x-bar x|` `(6)=(2)xx(5)` |
10 - 20 | 15 | 15 | 225 | 20 | 300 |
20 - 30 | 25 | 25 | 625 | 10 | 250 |
30 - 40 | 20 | 35 | 700 | 0 | 0 |
40 - 50 | 12 | 45 | 540 | 10 | 120 |
50 - 60 | 8 | 55 | 440 | 20 | 160 |
60 - 70 | 5 | 65 | 325 | 30 | 150 |
70 - 80 | 3 | 75 | 225 | 40 | 120 |
--- | --- | --- | --- | --- | --- |
-- | `n=88` | -- | `sum f*x=3080` | -- | `sum f*|x-bar x|=1100` |
Mean deviation of Mean
`delta bar x = (sum f*|x - bar x|)/n`
`delta bar x = 1100/88`
`delta bar x = 12.5`
Coefficient of Mean deviation `=(delta bar x)/(bar x)`
`=12.5/35`
`=0.3571`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then