1. Find Decompose(A,B,C)
`A=(1,2)`,`B=(3,1)`,`C=(8,1)`Solution:Here `vec A=(1,2),vec B=(3,1),vec C=(8,1)`
Form equation from vectors
`vec C = x vec A + y vec B`
So system of linear equations are
`1x+3y=8`
`2x+1y=1`
Solution of equations using Elimination method
Total Equations are `2`
`x+3y=8 -> (1)`
`2x+y=1 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `x`.
`x+3y=8` | ` xx 2->` | | `` | `2x` | `+` | `6y` | `=` | `16` | `` |
| | − | |
`2x+y=1` | ` xx 1->` | | `` | `2x` | `+` | `y` | `=` | `1` | `` |
| | |
|
| | | | | `` | `5y` | `=` | `15` | ` -> (3)` |
Now use back substitution method
From (3)
`5y=15`
`=>y=(15)/(5)=3`
From (1)
`x+3y=8`
`=>x+3(3)=8`
`=>x+9=8`
`=>x=8-9=-1`
Solution using Elimination method.
`x=-1,y=3`
`x=-1,y=3`
So, `vec C=-1vec (A) +3vec (B)`
2. Find Decompose(A,B,C)
`A=(1,2)`,`B=(1,3)`,`C=(2,4)`Solution:Here `vec A=(1,2),vec B=(1,3),vec C=(2,4)`
Form equation from vectors
`vec C = x vec A + y vec B`
So system of linear equations are
`x+y=2`
`2x+3y=4`
Solution of equations using Elimination method
Total Equations are `2`
`x+y=2 -> (1)`
`2x+3y=4 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `x`.
`x+y=2` | ` xx 2->` | | `` | `2x` | `+` | `2y` | `=` | `4` | `` |
| | − | |
`2x+3y=4` | ` xx 1->` | | `` | `2x` | `+` | `3y` | `=` | `4` | `` |
| | |
|
| | | | | `-` | `y` | `=` | `0` | ` -> (3)` |
Now use back substitution method
From (3)
`-y=0`
`=>y=0`
From (1)
`x+y=2`
`=>x+(0)=2`
`=>x=2`
Solution using Elimination method.
`x = 2,y = 0`
`x=2,y=0`
So, `vec C = 2vec (A)`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then