1. Example-1
1. Find Decompose(A,B,C) `A=(1,2)`,`B=(3,1)`,`C=(8,1)`
Solution: Here `vec A=(1,2),vec B=(3,1),vec C=(8,1)`
Form equation from vectors `vec C = x vec A + y vec B`
So system of linear equations are `1x+3y=8`
`2x+1y=1`
Solution of equations using Elimination methodTotal Equations are `2` `x+3y=8 -> (1)` `2x+y=1 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `x`. `x+3y=8` | ` xx 2->` | | `` | `2x` | `+` | `6y` | `=` | `16` | `` | | | − | | `2x+y=1` | ` xx 1->` | | `` | `2x` | `+` | `y` | `=` | `1` | `` | | | |
| | | | | | `` | `5y` | `=` | `15` | ` -> (3)` |
Now use back substitution method From (3) `5y=15` `=>y=(15)/(5)=3` From (1) `x+3y=8` `=>x+3(3)=8` `=>x+9=8` `=>x=8-9=-1` Solution using Elimination method. `x=-1,y=3`
`x=-1,y=3`
So, `vec C=-1vec (A) +3vec (B)`
2. Find Decompose(A,B,C) `A=(1,2)`,`B=(1,3)`,`C=(2,4)`
Solution: Here `vec A=(1,2),vec B=(1,3),vec C=(2,4)`
Form equation from vectors `vec C = x vec A + y vec B`
So system of linear equations are `x+y=2`
`2x+3y=4`
Solution of equations using Elimination methodTotal Equations are `2` `x+y=2 -> (1)` `2x+3y=4 -> (2)`
Select the equations `(1)` and `(2)`, and eliminate the variable `x`. `x+y=2` | ` xx 2->` | | `` | `2x` | `+` | `2y` | `=` | `4` | `` | | | − | | `2x+3y=4` | ` xx 1->` | | `` | `2x` | `+` | `3y` | `=` | `4` | `` | | | |
| | | | | | `-` | `y` | `=` | `0` | ` -> (3)` |
Now use back substitution method From (3) `-y=0` `=>y=0` From (1) `x+y=2` `=>x+(0)=2` `=>x=2` Solution using Elimination method. `x = 2,y = 0` `x=2,y=0`
So, `vec C = 2vec (A)`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|