Home > Numerical methods calculators > Fixed Point Iteration method example

4. Fixed Point Iteration method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

3. Example-3 `x=sqrt(12)`
(Previous example)
5. Example-5 `f(x)=x^3+2x^2+x-1`
(Next example)

4. Example-4 `x=root(3)(48)`





Find a root of an equation `f(x)=root(3)(48)` using Fixed Point Iteration method

Solution:
`x=root(3)(48)`

`:.x^3=48`

`:.x^3-48=0`

Here
`x`01234
`f(x)`48474021-16


`:.` Root lies between `3` and `4`

`x_0 = (3 + 4)/2 = 3.5`


`:.48-x^3=0`

Adding `10x` in both the sides, we get

`10x=48-x^3+10x`

`:.x=(48-x^3+10x)/10`

`:.phi(x)=(48-x^3+10x)/10`

`x_1 = phi(x_0) = phi(-0.5) = 4.3125`

`x_2 = phi(x_1) = phi(4.3125) = 1.09226`

`x_3 = phi(x_2) = phi(1.09226) = 5.76195`

`x_4 = phi(x_3) = phi(5.76195) = -8.56777`

`x_5 = phi(x_4) = phi(-8.56777) = 59.12531`

`x_6 = phi(x_5) = phi(59.12531) = -20605.1162`


The method lead us away from the solution, so it is divergent.
`n``x_0``x_1=phi(x_0)`UpdateDifference
`|x_1-x_0|`
2-0.54.3125`x_0 = x_1`4.8125
34.31251.09226`x_0 = x_1`3.22024
41.092265.76195`x_0 = x_1`4.66969
55.76195-8.56777`x_0 = x_1`14.32972
6-8.5677759.12531`x_0 = x_1`67.69308
759.12531-20605.1162`x_0 = x_1`20664.24151



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 `x=sqrt(12)`
(Previous example)
5. Example-5 `f(x)=x^3+2x^2+x-1`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.