Solve Equations 3x1-x2=5;2x1-3x2+2x3=5;x2+2x3+5x4=10;x3-x4=1 using Thomas algorithm methodSolution:Solving tridiagonal matrix system of equations using Thomas algorithm method
Total Equations are `4`
`3x1-x2+0x3+0x4=5 -> (1)`
`2x1-3x2+2x3+0x4=5 -> (2)`
`0x1+x2+2x3+5x4=10 -> (3)`
`0x1+0x2+x3-x4=1 -> (4)`
Converting given equations into matrix form
| `3` | `-1` | `0` | `0` | | `5` | |
| `2` | `-3` | `2` | `0` | | `5` | |
| `0` | `1` | `2` | `5` | | `10` | |
| `0` | `0` | `1` | `-1` | | `1` | |
Identify each number above with Thomas algorithm notation
| `b_1` | `c_1` | `0` | `0` | | `d_1` | |
| `a_2` | `b_2` | `c_2` | `0` | | `d_2` | |
| `0` | `a_3` | `b_3` | `c_3` | | `d_3` | |
| `0` | `0` | `a_4` | `b_4` | | `d_4` | |
Sub diagonal values are
`a_2=2,a_3=1,a_4=1`
Main diagonal values are
`b_1=3,b_2=-3,b_3=2,b_4=-1`
Super diagonal values are
`c_1=-1,c_2=2,c_3=5`
Right-hand side values are
`d_1=5,d_2=5,d_3=10,d_4=1`
Step-1 :`y_i=b_i-(a_i * c_(i-1))/(y_(i-1)), i=2,3,4``y_1=b_1``=3`
`y_2=b_2-(a_2 * c_1)/(y_1)``=-3-(2 * -1)/(3)`
`=-3+0.6667`
`=-2.3333`
`y_3=b_3-(a_3 * c_2)/(y_2)``=2-(1 * 2)/(-2.3333)`
`=2+0.8571`
`=2.8571`
`y_4=b_4-(a_4 * c_3)/(y_3)``=-1-(1 * 5)/(2.8571)`
`=-1-1.75`
`=-2.75`
Step-2 :`z_i=(d_i-a_i*z_(i-1))/(y_i), i=2,3,4``z_1=d_1/y_1``=5/3=1.6667`
`z_2=(d_2-a_2*z_1)/(y_2)``=(5 - 2 * 1.6667)/(-2.3333)`
`=(1.6667)/(-2.3333)`
`=-0.7143`
`z_3=(d_3-a_3*z_2)/(y_3)``=(10 - 1 * (-0.7143))/(2.8571)`
`=(10.7143)/(2.8571)`
`=3.75`
`z_4=(d_4-a_4*z_3)/(y_4)``=(1 - 1 * 3.75)/(-2.75)`
`=(-2.75)/(-2.75)`
`=1`
Step-3 :`x_i=z_i-(c_i*x_(i+1))/(y_i), i=3,2,1``x_4=z_4``=1`
`x_3=z_3-(c_3*x_4)/(y_3)``=3.75-(5 * 1)/(2.8571)`
`=3.75-1.75`
`=2`
`x_2=z_2-(c_2*x_3)/(y_2)``=-0.7143-(2 * 2)/(-2.3333)`
`=-0.7143+1.7143`
`=1`
`x_1=z_1-(c_1*x_2)/(y_1)``=1.6667-((-1) * 1)/(3)`
`=1.6667+0.3333`
`=2`
Solution is
`x_1=2`
`x_2=1`
`x_3=2`
`x_4=1`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then