Solve Equations 2.04x1-x2=48.8;-x1+2.04x2-x3=0.8;-x2+2.04x3=0.8 using Thomas algorithm methodSolution:Solving tridiagonal matrix system of equations using Thomas algorithm method
Total Equations are `3`
`2.04x1-x2+0x3=48.8 -> (1)`
`-x1+2.04x2-x3=0.8 -> (2)`
`0x1-x2+2.04x3=0.8 -> (3)`
Converting given equations into matrix form
| `2.04` | `-1` | `0` | | `48.8` | |
| `-1` | `2.04` | `-1` | | `0.8` | |
| `0` | `-1` | `2.04` | | `0.8` | |
Identify each number above with Thomas algorithm notation
| `b_1` | `c_1` | `0` | | `d_1` | |
| `a_2` | `b_2` | `c_2` | | `d_2` | |
| `0` | `a_3` | `b_3` | | `d_3` | |
Sub diagonal values are
`a_2=-1,a_3=-1`
Main diagonal values are
`b_1=2.04,b_2=2.04,b_3=2.04`
Super diagonal values are
`c_1=-1,c_2=-1`
Right-hand side values are
`d_1=48.8,d_2=0.8,d_3=0.8`
Step-1 :`y_i=b_i-(a_i * c_(i-1))/(y_(i-1)), i=2,3``y_1=b_1``=2.04`
`y_2=b_2-(a_2 * c_1)/(y_1)``=2.04-(-1 * -1)/(2.04)`
`=2.04-0.4902`
`=1.5498`
`y_3=b_3-(a_3 * c_2)/(y_2)``=2.04-(-1 * -1)/(1.5498)`
`=2.04-0.6452`
`=1.3948`
Step-2 :`z_i=(d_i-a_i*z_(i-1))/(y_i), i=2,3``z_1=d_1/y_1``=48.8/2.04=23.9216`
`z_2=(d_2-a_2*z_1)/(y_2)``=(0.8 - (-1) * 23.9216)/(1.5498)`
`=(24.7216)/(1.5498)`
`=15.9514`
`z_3=(d_3-a_3*z_2)/(y_3)``=(0.8 - (-1) * 15.9514)/(1.3948)`
`=(16.7514)/(1.3948)`
`=12.0103`
Step-3 :`x_i=z_i-(c_i*x_(i+1))/(y_i), i=2,1``x_3=z_3``=12.0103`
`x_2=z_2-(c_2*x_3)/(y_2)``=15.9514-((-1) * 12.0103)/(1.5498)`
`=15.9514+7.7495`
`=23.701`
`x_1=z_1-(c_1*x_2)/(y_1)``=23.9216-((-1) * 23.701)/(2.04)`
`=23.9216+11.6181`
`=35.5397`
Solution is
`x_1=35.5397`
`x_2=23.701`
`x_3=12.0103`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then