Home > Algebra calculators > Partial Fraction decomposition example

Partial Fraction decomposition example ( Enter your problem )
  1. Example `(5x-4)/(x^2-x-2)`
  2. Example `(3x)/(x^2+2x+1)`
  3. Example `(x-3)/(x^3+2x^2+x)`
  4. Example `(x^2+15)/((x+3)^2(x^2+3))`
  5. Example `(2x^3)/((x+1)(x-1))`
  6. Example `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`

2. Example `(3x)/(x^2+2x+1)`
(Next example)

1. Example `(5x-4)/(x^2-x-2)`





1. Partial Fraction `(5x-4)/(x^2-x-2)`

Solution:
1. Factors the denominator
`(5x-4)/(x^2-x-2)=(5x-4)/((x+1)(x-2))`

2. Partial Fraction for each factors
`:. (5x-4)/((x+1)(x-2))=A/(x+1)+B/(x-2)`

3. Multiply through by the common denominator of `(x+1)(x-2)`

`:. 5x-4=A(x-2)+B(x+1)`

`:. 5x-4=Ax-2A+Bx+B`

4. Group the `x`-terms and the constant terms

`:. 5x-4=(A+B)x+(-2A+B)`

5. Coefficients of the two polynomials must be equal, so we get equations
`A+B=5`

`-2A+B=-4`

Solution of equations using Elimination method

Total Equations are `2`

`A+B=5 -> (1)`

`-2A+B=-4 -> (2)`



Select the equations `(1)` and `(2)`, and eliminate the variable `B`.

`A+B=5`` xx 1->````A``+``B``=``5```
`-2A+B=-4`` xx 1->``-``2A``+``B``=``-4```

```3A``=``9`` -> (3)`




Now use back substitution method
From (3)
`3A=9`

`=>3A=9`

`=>A=(9)/(3)=3`

From (1)
`A+B=5`

`=>(3)+B=5`

`=>B+3=5`

`=>B=5-3=2`

Solution using back substitution method.
`A = 3,B = 2`



After solving these equations, we get
`A=3,B=2`

Substitute these values in the original fractions
`((5x-4))/((x+1)(x-2))=(3)/(x+1)+(2)/(x-2)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example `(3x)/(x^2+2x+1)`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.