Step - 1 : 1. Divide the first term of the dividend by the first term of the divisor : `(2x^3)/(x^2)=color{green}{2x}`
2. Write down the calculated result `color{green}{2x}` in the upper part of the table.
3. Multiply it by the divisor `color{green}{2x} xx (color{blue}{x^2-1})=color{red}{2x^3-2x}`
4. Subtract this result from the dividend
`(2x^3+0x^2+0x+0)-(color{red}{2x^3-2x})=color{Magenta}{0x^2+2x+0}`
| `` | `2x` | | | | | | | | |
`color{blue}{x^2-1}` | `` | `2x^3` | `+` | `0x^2` | `+` | `0x` | `+` | `0` | | |
| `` | −`2x^3` | | | `-` | +`2x` | | | | `color{green}{2x} xx (color{blue}{x^2-1})` |
| | | `` | `0x^2` | `+` | `2x` | `+` | `0` | | |
Step - 2 : 1. Divide the first term of the dividend by the first term of the divisor : `(0x^2)/(x^2)=color{green}{0}`
2. Write down the calculated result `color{green}{0}` in the upper part of the table.
3. Multiply it by the divisor `color{green}{0} xx (color{blue}{x^2-1})=color{red}{0x^2-0}`
4. Subtract this result from the remainder
`(0x^2+2x+0)-(color{red}{0x^2-0})=color{Magenta}{2x}`
| `` | `2x` | `+` | `0` | | | | | | |
`color{blue}{x^2-1}` | `` | `2x^3` | `+` | `0x^2` | `+` | `0x` | `+` | `0` | | |
| `` | −`2x^3` | | | `-` | +`2x` | | | | `2x xx (color{blue}{x^2-1})` |
| | | `` | `0x^2` | `+` | `2x` | `+` | `0` | | |
| | | `` | −`0x^2` | | | `-` | +`0` | | `color{green}{0} xx (color{blue}{x^2-1})` |
| | | | | `` | `2x` | | | | |