Home > Algebra calculators > Partial Fraction decomposition example

Partial Fraction decomposition example ( Enter your problem )
  1. Example `(5x-4)/(x^2-x-2)`
  2. Example `(3x)/(x^2+2x+1)`
  3. Example `(x-3)/(x^3+2x^2+x)`
  4. Example `(x^2+15)/((x+3)^2(x^2+3))`
  5. Example `(2x^3)/((x+1)(x-1))`
  6. Example `(x^5-2x^4+x^3+x+5)/(x^3-2x^2+x-2)`

3. Example `(x-3)/(x^3+2x^2+x)`
(Previous example)
5. Example `(2x^3)/((x+1)(x-1))`
(Next example)

4. Example `(x^2+15)/((x+3)^2(x^2+3))`





Partial Fraction `(x^2+15)/((x+3)^2(x^2+3))`

Solution:
1. Factors the denominator
`(x^2+15)/((x+3)^2(x^2+3))=(x^2+15)/((x+3)^2(x^2+3))`

2. Partial fraction for each factors
`:. (x^2+15)/((x+3)^2(x^2+3))=A/(x+3)+B/(x+3)^2+(Cx+D)/(x^2+3)`

3. Multiply through by the common denominator of `(x+3)^2(x^2+3)`

`:. x^2+15=A xx ((x+3)(x^2+3))+B xx (x^2+3)+(Cx+D) xx ((x+3)^2)`

`:. x^2+15=A xx (x^3+3x+3x^2+9)+B xx (x^2+3)+(Cx+D) xx (x^2+6x+9)`

`:. x^2+15=Ax^3+3Ax+3Ax^2+9A+Bx^2+3B+Cx^3+6Cx^2+9Cx+Dx^2+6Dx+9D`

4. Group the `x`-terms and the constant terms

`:. x^2+15=(A+C)x^3+(3A+B+6C+D)x^2+(3A+9C+6D)x+(9A+3B+9D)`

5. Coefficients of the two polynomials must be equal, so we get equations
`A+C=0`

`3A+B+6C+D=1`

`3A+9C+6D=0`

`9A+3B+9D=15`

Solution of equations using Elimination method

Total Equations are `4`

`a+0b+c+0d=0 -> (1)`

`3a+b+6c+d=1 -> (2)`

`3a+0b+9c+6d=0 -> (3)`

`9a+3b+0c+9d=15 -> (4)`



Select the equations `(1)` and `(2)`, and eliminate the variable `a`.

`a+c=0`` xx 3->````3a``+``3c``=``0```
`3a+b+6c+d=1`` xx 1->````3a``+``b``+``6c``+``d``=``1```

`-``b``-``3c``-``d``=``-1`` -> (5)`




Select the equations `(1)` and `(3)`, and eliminate the variable `a`.

`a+c=0`` xx 3->````3a``+``3c``=``0```
`3a+9c+6d=0`` xx 1->````3a``+``9c``+``6d``=``0```

`-``6c``-``6d``=``0`` -> (6)`




Select the equations `(1)` and `(4)`, and eliminate the variable `a`.

`a+c=0`` xx 9->````9a``+``9c``=``0```
`9a+3b+9d=15`` xx 1->````9a``+``3b``+``9d``=``15```

`-``3b``+``9c``-``9d``=``-15`` -> (7)`




Select the equations `(5)` and `(7)`, and eliminate the variable `b`.

`-b-3c-d=-1`` xx 3->``-``3b``-``9c``-``3d``=``-3```
`-3b+9c-9d=-15`` xx 1->``-``3b``+``9c``-``9d``=``-15```

`-``18c``+``6d``=``12`` -> (8)`




Select the equations `(6)` and `(8)`, and eliminate the variable `c`.

`-6c-6d=0`` xx 3->``-``18c``-``18d``=``0```
`-18c+6d=12`` xx 1->``-``18c``+``6d``=``12```

`-``24d``=``-12`` -> (9)`


Now use back substitution method
From (9)
`-24d=-12`

`=>d=(-12)/(-24)=1/2`

From (6)
`-6c-6d=0`

`=>-6c-6(1/2)=0`

`=>-6c-3=0`

`=>-6c=0+3=3`

`=>c=(3)/(-6)=-1/2`

From (5)
`-b-3c-d=-1`

`=>-b-3(-1/2)-(1/2)=-1`

`=>-b+1=-1`

`=>-b=-1-1=-2`

`=>b=2`

From (1)
`a+c=0`

`=>a+(-1/2)=0`

`=>a-1/2=0`

`=>a=0+1/2=1/2`

Solution using back substitution method.
`a=1/2,b=2,c=-1/2,d=1/2`



After solving these equations, we get
`a=1/2,b=2,c=-1/2,d=1/2`

Substitute these values in the original fraction
`((x^2+15))/((x+3)^2(x^2+3))=(1/2)/(x+3)+(2)/(x+3)^2+(-1/2x+1/2)/(x^2+3)`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example `(x-3)/(x^3+2x^2+x)`
(Previous example)
5. Example `(2x^3)/((x+1)(x-1))`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.