5. Calculate Quartile-3 from the following grouped data
| Class | Frequency |
| 10 - 20 | 15 |
| 20 - 30 | 25 |
| 30 - 40 | 20 |
| 40 - 50 | 12 |
| 50 - 60 | 8 |
| 60 - 70 | 5 |
| 70 - 80 | 3 |
Solution:| Class | Frequency `f` | `cf` |
| 10 - 20 | 15 | 15 |
| 20 - 30 | 25 | 40 |
| 30 - 40 | 20 | 60 |
| 40 - 50 | 12 | 72 |
| 50 - 60 | 8 | 80 |
| 60 - 70 | 5 | 85 |
| 70 - 80 | 3 | 88 |
| --- | --- | --- |
| n = 88 | -- |
Here, `n = 88`
`Q_3` class :
Class with `((3n)/4)^(th)` value of the observation in `cf` column
`=((3*88)/4)^(th)` value of the observation in `cf` column
`=(66)^(th)` value of the observation in `cf` column
and it lies in the class `40 - 50`.
`:. Q_3` class : `40 - 50`
The lower boundary point of `40 - 50` is `40`.
`:. L = 40`
`Q_3 = L + ((3 n)/4 - cf)/f * c`
`=40 + (66 - 60)/12 * 10`
`=40 + (6)/12 * 10`
`=40 + 5`
`=45`
6. Calculate Quartile-1 from the following grouped data
| Class | Frequency |
| 20 - 25 | 110 |
| 25 - 30 | 170 |
| 30 - 35 | 80 |
| 35 - 40 | 45 |
| 40 - 45 | 40 |
| 45 - 50 | 35 |
Solution:| Class | Frequency `f` | `cf` |
| 20 - 25 | 110 | 110 |
| 25 - 30 | 170 | 280 |
| 30 - 35 | 80 | 360 |
| 35 - 40 | 45 | 405 |
| 40 - 45 | 40 | 445 |
| 45 - 50 | 35 | 480 |
| --- | --- | --- |
| n = 480 | -- |
Here, `n = 480`
`Q_1` class :
Class with `(n/4)^(th)` value of the observation in `cf` column
`=(480/4)^(th)` value of the observation in `cf` column
`=(120)^(th)` value of the observation in `cf` column
and it lies in the class `25 - 30`.
`:. Q_1` class : `25 - 30`
The lower boundary point of `25 - 30` is `25`.
`:. L = 25`
`Q_1 = L + (( n)/4 - cf)/f * c`
`=25 + (120 - 110)/170 * 5`
`=25 + (10)/170 * 5`
`=25 + 0.2941`
`=25.2941`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then