3. Calculate Octile-3 from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:| Class | Frequency `f` | `cf` |
| 2 - 4 | 3 | 3 |
| 4 - 6 | 4 | 7 |
| 6 - 8 | 2 | 9 |
| 8 - 10 | 1 | 10 |
| --- | --- | --- |
| `n = 10` | -- |
Here, `n = 10`
`"Octile"_3` class :
Class with `((3n)/8)^(th)` value of the observation in `cf` column
`=((3*10)/8)^(th)` value of the observation in `cf` column
`=(3.75)^(th)` value of the observation in `cf` column
and it lies in the class `4 - 6`.
`:. "Octile"_3` class : `4 - 6`
The lower boundary point of `4-6` is `4`.
`:. L=4`
`"Octile"_3=L+((3 n)/8 - cf)/f * c`
`=4+(3.75-3)/4*2`
`=4+(0.75)/4*2`
`=4+0.375`
`=4.375`
4. Calculate Octile-6 from the following grouped data
| Class | Frequency |
| 0 - 2 | 5 |
| 2 - 4 | 16 |
| 4 - 6 | 13 |
| 6 - 8 | 7 |
| 8 - 10 | 5 |
| 10 - 12 | 4 |
Solution:| Class | Frequency `f` | `cf` |
| 0 - 2 | 5 | 5 |
| 2 - 4 | 16 | 21 |
| 4 - 6 | 13 | 34 |
| 6 - 8 | 7 | 41 |
| 8 - 10 | 5 | 46 |
| 10 - 12 | 4 | 50 |
| --- | --- | --- |
| `n = 50` | -- |
Here, `n = 50`
`"Octile"_6` class :
Class with `((6n)/8)^(th)` value of the observation in `cf` column
`=((6*50)/8)^(th)` value of the observation in `cf` column
`=(37.5)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. "Octile"_6` class : `6 - 8`
The lower boundary point of `6-8` is `6`.
`:. L=6`
`"Octile"_6=L+((6 n)/8 - cf)/f * c`
`=6+(37.5-34)/7*2`
`=6+(3.5)/7*2`
`=6+1`
`=7`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then