5. Calculate Octile-6 from the following grouped data
| Class | Frequency |
| 10 - 20 | 15 |
| 20 - 30 | 25 |
| 30 - 40 | 20 |
| 40 - 50 | 12 |
| 50 - 60 | 8 |
| 60 - 70 | 5 |
| 70 - 80 | 3 |
Solution:| Class | Frequency `f` | `cf` |
| 10 - 20 | 15 | 15 |
| 20 - 30 | 25 | 40 |
| 30 - 40 | 20 | 60 |
| 40 - 50 | 12 | 72 |
| 50 - 60 | 8 | 80 |
| 60 - 70 | 5 | 85 |
| 70 - 80 | 3 | 88 |
| --- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`"Octile"_6` class :
Class with `((6n)/8)^(th)` value of the observation in `cf` column
`=((6*88)/8)^(th)` value of the observation in `cf` column
`=(66)^(th)` value of the observation in `cf` column
and it lies in the class `40 - 50`.
`:. "Octile"_6` class : `40 - 50`
The lower boundary point of `40-50` is `40`.
`:. L=40`
`"Octile"_6=L+((6 n)/8 - cf)/f * c`
`=40+(66-60)/12*10`
`=40+(6)/12*10`
`=40+5`
`=45`
6. Calculate Octile-3 from the following grouped data
| Class | Frequency |
| 10 - 20 | 15 |
| 20 - 30 | 25 |
| 30 - 40 | 20 |
| 40 - 50 | 12 |
| 50 - 60 | 8 |
| 60 - 70 | 5 |
| 70 - 80 | 3 |
Solution:| Class | Frequency `f` | `cf` |
| 10 - 20 | 15 | 15 |
| 20 - 30 | 25 | 40 |
| 30 - 40 | 20 | 60 |
| 40 - 50 | 12 | 72 |
| 50 - 60 | 8 | 80 |
| 60 - 70 | 5 | 85 |
| 70 - 80 | 3 | 88 |
| --- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`"Octile"_3` class :
Class with `((3n)/8)^(th)` value of the observation in `cf` column
`=((3*88)/8)^(th)` value of the observation in `cf` column
`=(33)^(th)` value of the observation in `cf` column
and it lies in the class `20 - 30`.
`:. "Octile"_3` class : `20 - 30`
The lower boundary point of `20-30` is `20`.
`:. L=20`
`"Octile"_3=L+((3 n)/8 - cf)/f * c`
`=20+(33-15)/25*10`
`=20+(18)/25*10`
`=20+7.2`
`=27.2`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then