3. Calculate Quintile-4 from the following grouped data
| Class | Frequency |
| 2 - 4 | 3 |
| 4 - 6 | 4 |
| 6 - 8 | 2 |
| 8 - 10 | 1 |
Solution:| Class | Frequency `f` | `cf` |
| 2 - 4 | 3 | 3 |
| 4 - 6 | 4 | 7 |
| 6 - 8 | 2 | 9 |
| 8 - 10 | 1 | 10 |
| --- | --- | --- |
| `n = 10` | -- |
Here, `n = 10`
`"Quintile"_4` class :
Class with `((4n)/5)^(th)` value of the observation in `cf` column
`=((4*10)/5)^(th)` value of the observation in `cf` column
`=(8)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. "Quintile"_4` class : `6 - 8`
The lower boundary point of `6-8` is `6`.
`:. L=6`
`"Quintile"_4=L+((4 n)/5 - cf)/f * c`
`=6+(8-7)/2*2`
`=6+(1)/2*2`
`=6+1`
`=7`
4. Calculate Quintile-3 from the following grouped data
| Class | Frequency |
| 0 - 2 | 5 |
| 2 - 4 | 16 |
| 4 - 6 | 13 |
| 6 - 8 | 7 |
| 8 - 10 | 5 |
| 10 - 12 | 4 |
Solution:| Class | Frequency `f` | `cf` |
| 0 - 2 | 5 | 5 |
| 2 - 4 | 16 | 21 |
| 4 - 6 | 13 | 34 |
| 6 - 8 | 7 | 41 |
| 8 - 10 | 5 | 46 |
| 10 - 12 | 4 | 50 |
| --- | --- | --- |
| `n = 50` | -- |
Here, `n = 50`
`"Quintile"_3` class :
Class with `((3n)/5)^(th)` value of the observation in `cf` column
`=((3*50)/5)^(th)` value of the observation in `cf` column
`=(30)^(th)` value of the observation in `cf` column
and it lies in the class `4 - 6`.
`:. "Quintile"_3` class : `4 - 6`
The lower boundary point of `4-6` is `4`.
`:. L=4`
`"Quintile"_3=L+((3 n)/5 - cf)/f * c`
`=4+(30-21)/13*2`
`=4+(9)/13*2`
`=4+1.3846`
`=5.3846`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then