5. Calculate Quintile-3 from the following grouped data
| Class | Frequency |
| 10 - 20 | 15 |
| 20 - 30 | 25 |
| 30 - 40 | 20 |
| 40 - 50 | 12 |
| 50 - 60 | 8 |
| 60 - 70 | 5 |
| 70 - 80 | 3 |
Solution:| Class | Frequency `f` | `cf` |
| 10 - 20 | 15 | 15 |
| 20 - 30 | 25 | 40 |
| 30 - 40 | 20 | 60 |
| 40 - 50 | 12 | 72 |
| 50 - 60 | 8 | 80 |
| 60 - 70 | 5 | 85 |
| 70 - 80 | 3 | 88 |
| --- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`"Quintile"_3` class :
Class with `((3n)/5)^(th)` value of the observation in `cf` column
`=((3*88)/5)^(th)` value of the observation in `cf` column
`=(52.8)^(th)` value of the observation in `cf` column
and it lies in the class `30 - 40`.
`:. "Quintile"_3` class : `30 - 40`
The lower boundary point of `30-40` is `30`.
`:. L=30`
`"Quintile"_3=L+((3 n)/5 - cf)/f * c`
`=30+(52.8-40)/20*10`
`=30+(12.8)/20*10`
`=30+6.4`
`=36.4`
6. Calculate Quintile-1 from the following grouped data
| Class | Frequency |
| 20 - 25 | 110 |
| 25 - 30 | 170 |
| 30 - 35 | 80 |
| 35 - 40 | 45 |
| 40 - 45 | 40 |
| 45 - 50 | 35 |
Solution:| Class | Frequency `f` | `cf` |
| 20 - 25 | 110 | 110 |
| 25 - 30 | 170 | 280 |
| 30 - 35 | 80 | 360 |
| 35 - 40 | 45 | 405 |
| 40 - 45 | 40 | 445 |
| 45 - 50 | 35 | 480 |
| --- | --- | --- |
| `n = 480` | -- |
Here, `n = 480`
`"Quintile"_1` class :
Class with `(n/5)^(th)` value of the observation in `cf` column
`=(480/5)^(th)` value of the observation in `cf` column
`=(96)^(th)` value of the observation in `cf` column
and it lies in the class `20 - 25`.
`:. "Quintile"_1` class : `20 - 25`
The lower boundary point of `20-25` is `20`.
`:. L=20`
`"Quintile"_1=L+(( n)/5 - cf)/f * c`
`=20+(96-0)/110*5`
`=20+(96)/110*5`
`=20+4.3636`
`=24.3636`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then