3. Calculate Quartile deviation, Coefficient of Q.D., Interquartile range from the following grouped data
Class | Frequency |
2 - 4 | 3 |
4 - 6 | 4 |
6 - 8 | 2 |
8 - 10 | 1 |
Solution:Quartile deviation :Class | Frequency `f` | `cf` |
2 - 4 | 3 | 3 |
4 - 6 | 4 | 7 |
6 - 8 | 2 | 9 |
8 - 10 | 1 | 10 |
--- | --- | --- |
| `n = 10` | -- |
Here, `n = 10`
`Q_1` class :
Class with `(n/4)^(th)` value of the observation in `cf` column
`=(10/4)^(th)` value of the observation in `cf` column
`=(2.5)^(th)` value of the observation in `cf` column
and it lies in the class `2 - 4`.
`:. Q_1` class : `2 - 4`
The lower boundary point of `2-4` is `2`.
`:. L=2`
`Q_1=L+(( n)/4 - cf)/f * c`
`=2+(2.5-0)/3*2`
`=2+(2.5)/3*2`
`=2+1.6667`
`=3.6667`
`Q_3` class :
Class with `((3n)/4)^(th)` value of the observation in `cf` column
`=((3*10)/4)^(th)` value of the observation in `cf` column
`=(7.5)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. Q_3` class : `6 - 8`
The lower boundary point of `6-8` is `6`.
`:. L=6`
`Q_3=L+((3 n)/4 - cf)/f * c`
`=6+(7.5-7)/2*2`
`=6+(0.5)/2*2`
`=6+0.5`
`=6.5`
InterQuartile range `=Q_3 - Q_1=6.5-3.6667=2.8333`
Quartile deviation `=(Q_3 - Q_1)/2=(6.5-3.6667)/2=2.8333/2=1.4166` (Semi-InterQuartile range)
Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(6.5-3.6667)/(6.5+3.6667)=2.8333/10.1667=0.2787`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then