4. Calculate Quartile deviation, Coefficient of Q.D., Interquartile range from the following grouped data
Class | Frequency |
10 - 20 | 15 |
20 - 30 | 25 |
30 - 40 | 20 |
40 - 50 | 12 |
50 - 60 | 8 |
60 - 70 | 5 |
70 - 80 | 3 |
Solution:Quartile deviation :Class | Frequency `f` | `cf` |
10 - 20 | 15 | 15 |
20 - 30 | 25 | 40 |
30 - 40 | 20 | 60 |
40 - 50 | 12 | 72 |
50 - 60 | 8 | 80 |
60 - 70 | 5 | 85 |
70 - 80 | 3 | 88 |
--- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`Q_1` class :
Class with `(n/4)^(th)` value of the observation in `cf` column
`=(88/4)^(th)` value of the observation in `cf` column
`=(22)^(th)` value of the observation in `cf` column
and it lies in the class `20 - 30`.
`:. Q_1` class : `20 - 30`
The lower boundary point of `20-30` is `20`.
`:. L=20`
`Q_1=L+(( n)/4 - cf)/f * c`
`=20+(22-15)/25*10`
`=20+(7)/25*10`
`=20+2.8`
`=22.8`
`Q_3` class :
Class with `((3n)/4)^(th)` value of the observation in `cf` column
`=((3*88)/4)^(th)` value of the observation in `cf` column
`=(66)^(th)` value of the observation in `cf` column
and it lies in the class `40 - 50`.
`:. Q_3` class : `40 - 50`
The lower boundary point of `40-50` is `40`.
`:. L=40`
`Q_3=L+((3 n)/4 - cf)/f * c`
`=40+(66-60)/12*10`
`=40+(6)/12*10`
`=40+5`
`=45`
InterQuartile range `=Q_3 - Q_1=45-22.8=22.2`
Quartile deviation `=(Q_3 - Q_1)/2=(45-22.8)/2=22.2/2=11.1` (Semi-InterQuartile range)
Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(45-22.8)/(45+22.8)=22.2/67.8=0.3274`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then