3. Calculate Decile deviation, Coefficient of D.D., Interdecile range from the following grouped data
Class | Frequency |
2 - 4 | 3 |
4 - 6 | 4 |
6 - 8 | 2 |
8 - 10 | 1 |
Solution:Decile deviation :Class | Frequency `f` | `cf` |
2 - 4 | 3 | 3 |
4 - 6 | 4 | 7 |
6 - 8 | 2 | 9 |
8 - 10 | 1 | 10 |
--- | --- | --- |
| `n = 10` | -- |
Here, `n = 10`
`D_1` class :
Class with `(n/10)^(th)` value of the observation in `cf` column
`=(10/10)^(th)` value of the observation in `cf` column
`=(1)^(th)` value of the observation in `cf` column
and it lies in the class `2 - 4`.
`:. D_1` class : `2 - 4`
The lower boundary point of `2-4` is `2`.
`:. L=2`
`D_1=L+(( n)/10 - cf)/f * c`
`=2+(1-0)/3*2`
`=2+(1)/3*2`
`=2+0.6667`
`=2.6667`
`D_9` class :
Class with `((9n)/10)^(th)` value of the observation in `cf` column
`=((9*10)/10)^(th)` value of the observation in `cf` column
`=(9)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. D_9` class : `6 - 8`
The lower boundary point of `6-8` is `6`.
`:. L=6`
`D_9=L+((9 n)/10 - cf)/f * c`
`=6+(9-7)/2*2`
`=6+(2)/2*2`
`=6+2`
`=8`
InterDecile range `=D_9 - D_1=8-2.6667=5.3333`
Decile deviation `=(D_9 - D_1)/2=(8-2.6667)/2=5.3333/2=2.6666` (Semi-InterDecile range)
Coefficient of Decile deviation `=(D_9 - D_1)/(D_9 + D_1)=(8-2.6667)/(8+2.6667)=5.3333/10.6667=0.5`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then