4. Calculate Decile deviation, Coefficient of D.D., Interdecile range from the following grouped data
Class | Frequency |
10 - 20 | 15 |
20 - 30 | 25 |
30 - 40 | 20 |
40 - 50 | 12 |
50 - 60 | 8 |
60 - 70 | 5 |
70 - 80 | 3 |
Solution:Decile deviation :Class | Frequency `f` | `cf` |
10 - 20 | 15 | 15 |
20 - 30 | 25 | 40 |
30 - 40 | 20 | 60 |
40 - 50 | 12 | 72 |
50 - 60 | 8 | 80 |
60 - 70 | 5 | 85 |
70 - 80 | 3 | 88 |
--- | --- | --- |
| `n = 88` | -- |
Here, `n = 88`
`D_1` class :
Class with `(n/10)^(th)` value of the observation in `cf` column
`=(88/10)^(th)` value of the observation in `cf` column
`=(8.8)^(th)` value of the observation in `cf` column
and it lies in the class `10 - 20`.
`:. D_1` class : `10 - 20`
The lower boundary point of `10-20` is `10`.
`:. L=10`
`D_1=L+(( n)/10 - cf)/f * c`
`=10+(8.8-0)/15*10`
`=10+(8.8)/15*10`
`=10+5.8667`
`=15.8667`
`D_9` class :
Class with `((9n)/10)^(th)` value of the observation in `cf` column
`=((9*88)/10)^(th)` value of the observation in `cf` column
`=(79.2)^(th)` value of the observation in `cf` column
and it lies in the class `50 - 60`.
`:. D_9` class : `50 - 60`
The lower boundary point of `50-60` is `50`.
`:. L=50`
`D_9=L+((9 n)/10 - cf)/f * c`
`=50+(79.2-72)/8*10`
`=50+(7.2)/8*10`
`=50+9`
`=59`
InterDecile range `=D_9 - D_1=59-15.8667=43.1333`
Decile deviation `=(D_9 - D_1)/2=(59-15.8667)/2=43.1333/2=21.5666` (Semi-InterDecile range)
Coefficient of Decile deviation `=(D_9 - D_1)/(D_9 + D_1)=(59-15.8667)/(59+15.8667)=43.1333/74.8667=0.5761`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then