3. Calculate Percentile deviation, Coefficient of P.D., Interpercentile range from the following grouped data
Class | Frequency |
2 - 4 | 3 |
4 - 6 | 4 |
6 - 8 | 2 |
8 - 10 | 1 |
Solution:Percentile deviation :Class | Frequency `f` | `cf` |
2 - 4 | 3 | 3 |
4 - 6 | 4 | 7 |
6 - 8 | 2 | 9 |
8 - 10 | 1 | 10 |
--- | --- | --- |
| `n = 10` | -- |
Here, `n = 10`
`P_10` class :
Class with `((10n)/100)^(th)` value of the observation in `cf` column
`=((10*10)/100)^(th)` value of the observation in `cf` column
`=(1)^(th)` value of the observation in `cf` column
and it lies in the class `2 - 4`.
`:. P_10` class : `2 - 4`
The lower boundary point of `2-4` is `2`.
`:. L=2`
`P_10=L+((10 n)/100 - cf)/f * c`
`=2+(1-0)/3*2`
`=2+(1)/3*2`
`=2+0.6667`
`=2.6667`
`P_90` class :
Class with `((90n)/100)^(th)` value of the observation in `cf` column
`=((90*10)/100)^(th)` value of the observation in `cf` column
`=(9)^(th)` value of the observation in `cf` column
and it lies in the class `6 - 8`.
`:. P_90` class : `6 - 8`
The lower boundary point of `6-8` is `6`.
`:. L=6`
`P_90=L+((90 n)/100 - cf)/f * c`
`=6+(9-7)/2*2`
`=6+(2)/2*2`
`=6+2`
`=8`
InterPercentile range `=P_90 - P_10=8-2.6667=5.3333`
Percentile deviation `=(P_90 - P_10)/2=(8-2.6667)/2=5.3333/2=2.6666` (Semi-InterPercentile range)
Coefficient of Percentile deviation `=(P_90 - P_10)/(P_90 + P_10)=(8-2.6667)/(8+2.6667)=5.3333/10.6667=0.5`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then