Home > Statistical Methods calculators > Percentile deviation, Coefficient of percentile deviation, Interpercentile range, Semi-interpercentile range for grouped data example

Percentile deviation, Coefficient of percentile deviation, Interpercentile range, Semi-interpercentile range for grouped data Example-4 ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
  4. Example-4
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Mode using Grouping Method
  19. Less than type Cumulative frequency table
  20. More than type Cumulative frequency table
  21. Class and their frequency table

3. Example-3
(Previous example)
16. Five number summary
(Next method)

4. Example-4





4. Calculate Percentile deviation, Coefficient of P.D., Interpercentile range from the following grouped data
ClassFrequency
10 - 2015
20 - 3025
30 - 4020
40 - 5012
50 - 608
60 - 705
70 - 803


Solution:
Percentile deviation :
ClassFrequency
`f`
`cf`
10 - 201515
20 - 302540
30 - 402060
40 - 501272
50 - 60880
60 - 70585
70 - 80388
---------
`n = 88`--


Here, `n = 88`


`P_10` class :

Class with `((10n)/100)^(th)` value of the observation in `cf` column

`=((10*88)/100)^(th)` value of the observation in `cf` column

`=(8.8)^(th)` value of the observation in `cf` column

and it lies in the class `10 - 20`.

`:. P_10` class : `10 - 20`

The lower boundary point of `10-20` is `10`.

`:. L=10`

`P_10=L+((10 n)/100 - cf)/f * c`

`=10+(8.8-0)/15*10`

`=10+(8.8)/15*10`

`=10+5.8667`

`=15.8667`




`P_90` class :

Class with `((90n)/100)^(th)` value of the observation in `cf` column

`=((90*88)/100)^(th)` value of the observation in `cf` column

`=(79.2)^(th)` value of the observation in `cf` column

and it lies in the class `50 - 60`.

`:. P_90` class : `50 - 60`

The lower boundary point of `50-60` is `50`.

`:. L=50`

`P_90=L+((90 n)/100 - cf)/f * c`

`=50+(79.2-72)/8*10`

`=50+(7.2)/8*10`

`=50+9`

`=59`



InterPercentile range `=P_90 - P_10=59-15.8667=43.1333`

Percentile deviation `=(P_90 - P_10)/2=(59-15.8667)/2=43.1333/2=21.5666` (Semi-InterPercentile range)

Coefficient of Percentile deviation `=(P_90 - P_10)/(P_90 + P_10)=(59-15.8667)/(59+15.8667)=43.1333/74.8667=0.5761`







This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3
(Previous example)
16. Five number summary
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.