Home > Statistical Methods calculators > Find missing frequency for grouped data example

Find missing frequency for grouped data ( Enter your problem )
  1. Find 1 Missing frequency when Mean is given example
  2. Find 1 Missing frequency when Median is given example
  3. Find 2 Missing frequencies when Mean is given example
  4. Find 2 Missing frequencies when Median is given example
  5. Find 2 Missing frequencies when Mode is given example
  6. Find 2 Missing frequencies when Quartile is given example
  7. Find 3 Missing frequencies when Mean or Median or mode are given example

6. Find 2 Missing frequencies when Quartile is given example
(Previous example)

7. Find 3 Missing frequencies when Mean or Median or mode are given example





5. Find missing frequency from the following data
ClassFrequency
0 - 104
10 - 2016
20 - 30?
30 - 40?
40 - 50?
50 - 606
60 - 704
Total Frequency (N) = 230 and median;mode = 33.5,34


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
`cf`
`(6)`
0 - 1044
10 - 201620
20 - 30a` = f_0`20 + a
30 - 40b` = f_1`20 + a + b
40 - 50c` = f_2`20 + a + b + c
50 - 60626 + a + b + c
60 - 70430 + a + b + c
------
`n=30+a+b+c`


`n = 230`

`30 + a+b+c= 230`

`a+b+c=200 ->(1)`

To find Mode Class
Here, mode is `34`.

`:.` The mode class is `30 - 40`.

`:. L = `lower boundary point of mode class `=30`

`:. f_1 = ` frequency of the mode class `=b`

`:. f_0 = ` frequency of the preceding class `=a`

`:. f_2 = ` frequency of the succedding class `=c`

`:. c = ` class length of mode class `=10`

`Z = L + ((f_1 - f_0) / (2*f_1 - f_0 - f_2)) * c`

`34 = 30 + ((b - a)/(2*b - a - c)) * 10`

`34 - 30 = ((b - a)/(2*b - a - c)) * 10`

`4 = ((b - a)/(2*b - a - c)) * 10`

`4 = ((b - a)/(-a+2b-c)) * 10`

`4*(-a+2b-c)=(b-a)*10`

`-4a+8b-4c=-10a+10b`

`6a-2b-4c=0`

`2(3a-b-2c)=2*0`

`3a-b-2c=0 ->(2)`

To find median class
Here, median is `33.5`.

`:.` The median class is `30 - 40`.

Now,
`:. L = `lower boundary point of median class `=30`

`:. n = `Total frequency `=230`

`:. cf = `Cumulative frequency of the class preceding the median class `=20 + a`

`:. f = `Frequency of the median class `=b`

`:. c = `class length of median class `=10`

Median `M = L + (( n)/2 - cf)/f * c`

`33.5=30 + (( 230)/2 - (20 + a))/b * 10`

`33.5 - 30=(115 - (20 + a))/b * 10`

`3.5=(-a+95)/b * 10`

`3.5*b=(-a+95)*10`

`3.5b=-10a+950`

`10a+3.5b=950 ->(3)`

Now solving this 3 equations using substitution method
Total Equations are `3`

`a+b+c=200 -> (1)`

`3a-b-2c=0 -> (2)`

`10a+3.5b+0c=950 -> (3)`



Select the equations `(1)` and `(2)`, and eliminate the variable `c`.

`a+b+c=200`` xx 2->````2a``+``2b``+``2c``=``400```
+
`3a-b-2c=0`` xx 1->````3a``-``b``-``2c``=``0```

```5a``+``b``=``400`` -> (4)`




Select the equations `(3)` and `(4)`, and eliminate the variable `b`.

`10a+3.5b=950`` xx 1->````10a``+``3.5b``=``950```
`5a+b=400`` xx 3.5->````17.5a``+``3.5b``=``1400```

`-``7.5a``=``-450`` -> (5)`




Now use back substitution method
From (5)
`-7.5a=-450`

`=>a=(-450)/(-7.5)=60`

From (4)
`5a+b=400`

`=>5(60)+b=400`

`=>b+300=400`

`=>b=400-300=100`

From (1)
`a+b+c=200`

`=>(60)+(100)+c=200`

`=>c+160=200`

`=>c=200-160=40`

Solution using Elimination method.
`a = 60,b = 100,c = 40`

Thus, the missing frequencies are `60,100 and 40` respectively.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Find 2 Missing frequencies when Quartile is given example
(Previous example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.