Home > Statistical Methods calculators > Find missing frequency for grouped data example

Find missing frequency for grouped data ( Enter your problem )
  1. Find 1 Missing frequency when Mean is given example
  2. Find 1 Missing frequency when Median is given example
  3. Find 2 Missing frequencies when Mean is given example
  4. Find 2 Missing frequencies when Median is given example
  5. Find 2 Missing frequencies when Mode is given example
  6. Find 2 Missing frequencies when Quartile is given example
  7. Find 3 Missing frequencies when Mean or Median or mode are given example

4. Find 2 Missing frequencies when Median is given example
(Previous example)
6. Find 2 Missing frequencies when Quartile is given example
(Next example)

5. Find 2 Missing frequencies when Mode is given example





Find missing frequency from the following data
ClassFrequency
0 - 40014
400 - 80022
800 - 1200?
1200 - 1600124
1600 - 2000?
2000 - 240032
2400 - 280015
2800 - 32005
Total Frequency (N) = 360 and mode = 1376


Solution:
Class
`(1)`
Frequency `(f)`
`(2)`
0 - 40014
400 - 80022
800 - 1200a`=f_0`
1200 - 1600124`=f_1`
1600 - 2000b`=f_2`
2000 - 240032
2400 - 280015
2800 - 32005
------
`n=212+a+b`


`n = 360`

`212 + a+b= 360`

`a+b=148 ->(1)`

To find Mode Class
Here, mode is `1376`.

`:.` The mode class is `1200 - 1600`.

`:. L = `lower boundary point of mode class `=1200`

`:. f_1 = ` frequency of the mode class `=124`

`:. f_0 = ` frequency of the preceding class `=a`

`:. f_2 = ` frequency of the succedding class `=b`

`:. c = ` class length of mode class `=400`

`Z = L + ((f_1 - f_0) / (2*f_1 - f_0 - f_2)) * c`

`1376=1200 + ((124 - a)/(2*124 - a - b)) * 400`

`1376 - 1200 = ((124 - a)/(2*124 - a - b)) * 400`

`176=((124 - a)/(2*124 - a - b)) * 400`

`176=((124 - a)/(-a-b+248)) * 400`

`176*(-a-b+248)=(124-a)*400`

`-176a-176b+43648=-400a+49600`

`224a-176b=5952`

`16(14a-11b)=16*372`

`14a-11b=372 ->(2)`

Now solving this 2 equations using substitution method
`a+b=148`

and `14a-11b=372`

Suppose,
`a+b=148 ->(1)`

and `14a-11b=372 ->(2)`

Taking equation `(1)`, we have

`a+b=148`

`=>a=-b+148 ->(3)`

Putting `a=-b+148` in equation `(2)`, we get

`14a-11b=372`

`14(-b+148)-11b=372`

`=>-14b+2072-11b=372`

`=>-25b+2072=372`

`=>-25b=372-2072`

`=>-25b=-1700`

`=>b=68 ->(4)`

Now, Putting `b=68` in equation `(3)`, we get

`a=-b+148`

`=>a=-1(68)+148`

`=>a=-68+148`

`=>a=80`

`:.a=80" and "b=68`

Thus, the missing frequencies are `80 and 68` respectively.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Find 2 Missing frequencies when Median is given example
(Previous example)
6. Find 2 Missing frequencies when Quartile is given example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.