Find a root of an equation `f(x)=2x^3-2x-5` using Bisection method
Solution:
Here `2x^3-2x-5=0`
Let `f(x) = 2x^3-2x-5`
Here
`1^(st)` iteration :
Here `f(1) = -5 < 0` and `f(2) = 7 > 0`
`:.` Now, Root lies between `1` and `2`
`x_0=(1+2)/2=1.5`
`f(x_0)=f(1.5)=2*1.5^(3)-2*1.5-5=-1.25 < 0`
`2^(nd)` iteration :
Here `f(1.5) = -1.25 < 0` and `f(2) = 7 > 0`
`:.` Now, Root lies between `1.5` and `2`
`x_1=(1.5+2)/2=1.75`
`f(x_1)=f(1.75)=2*1.75^(3)-2*1.75-5=2.21875 > 0`
`3^(rd)` iteration :
Here `f(1.5) = -1.25 < 0` and `f(1.75) = 2.21875 > 0`
`:.` Now, Root lies between `1.5` and `1.75`
`x_2=(1.5+1.75)/2=1.625`
`f(x_2)=f(1.625)=2*1.625^(3)-2*1.625-5=0.33203 > 0`
`4^(th)` iteration :
Here `f(1.5) = -1.25 < 0` and `f(1.625) = 0.33203 > 0`
`:.` Now, Root lies between `1.5` and `1.625`
`x_3=(1.5+1.625)/2=1.5625`
`f(x_3)=f(1.5625)=2*1.5625^(3)-2*1.5625-5=-0.49561 < 0`
`5^(th)` iteration :
Here `f(1.5625) = -0.49561 < 0` and `f(1.625) = 0.33203 > 0`
`:.` Now, Root lies between `1.5625` and `1.625`
`x_4=(1.5625+1.625)/2=1.59375`
`f(x_4)=f(1.59375)=2*1.59375^(3)-2*1.59375-5=-0.09113 < 0`
`6^(th)` iteration :
Here `f(1.59375) = -0.09113 < 0` and `f(1.625) = 0.33203 > 0`
`:.` Now, Root lies between `1.59375` and `1.625`
`x_5=(1.59375+1.625)/2=1.60938`
`f(x_5)=f(1.60938)=2*1.60938^(3)-2*1.60938-5=0.1181 > 0`
`7^(th)` iteration :
Here `f(1.59375) = -0.09113 < 0` and `f(1.60938) = 0.1181 > 0`
`:.` Now, Root lies between `1.59375` and `1.60938`
`x_6=(1.59375+1.60938)/2=1.60156`
`f(x_6)=f(1.60156)=2*1.60156^(3)-2*1.60156-5=0.0129 > 0`
`8^(th)` iteration :
Here `f(1.59375) = -0.09113 < 0` and `f(1.60156) = 0.0129 > 0`
`:.` Now, Root lies between `1.59375` and `1.60156`
`x_7=(1.59375+1.60156)/2=1.59766`
`f(x_7)=f(1.59766)=2*1.59766^(3)-2*1.59766-5=-0.03926 < 0`
`9^(th)` iteration :
Here `f(1.59766) = -0.03926 < 0` and `f(1.60156) = 0.0129 > 0`
`:.` Now, Root lies between `1.59766` and `1.60156`
`x_8=(1.59766+1.60156)/2=1.59961`
`f(x_8)=f(1.59961)=2*1.59961^(3)-2*1.59961-5=-0.01322 < 0`
`10^(th)` iteration :
Here `f(1.59961) = -0.01322 < 0` and `f(1.60156) = 0.0129 > 0`
`:.` Now, Root lies between `1.59961` and `1.60156`
`x_9=(1.59961+1.60156)/2=1.60059`
`f(x_9)=f(1.60059)=2*1.60059^(3)-2*1.60059-5=-0.00017 < 0`
Approximate root of the equation `2x^3-2x-5=0` using Bisection method is `1.60059`
`n` | `a` | `f(a)` | `b` | `f(b)` | `c=(a + b)/2` | `f(c)` | Update |
1 | 1 | -5 | 2 | 7 | 1.5 | -1.25 | `a = c` |
2 | 1.5 | -1.25 | 2 | 7 | 1.75 | 2.21875 | `b = c` |
3 | 1.5 | -1.25 | 1.75 | 2.21875 | 1.625 | 0.33203 | `b = c` |
4 | 1.5 | -1.25 | 1.625 | 0.33203 | 1.5625 | -0.49561 | `a = c` |
5 | 1.5625 | -0.49561 | 1.625 | 0.33203 | 1.59375 | -0.09113 | `a = c` |
6 | 1.59375 | -0.09113 | 1.625 | 0.33203 | 1.60938 | 0.1181 | `b = c` |
7 | 1.59375 | -0.09113 | 1.60938 | 0.1181 | 1.60156 | 0.0129 | `b = c` |
8 | 1.59375 | -0.09113 | 1.60156 | 0.0129 | 1.59766 | -0.03926 | `a = c` |
9 | 1.59766 | -0.03926 | 1.60156 | 0.0129 | 1.59961 | -0.01322 | `a = c` |
10 | 1.59961 | -0.01322 | 1.60156 | 0.0129 | 1.60059 | -0.00017 | `a = c` |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then