Home > Numerical methods calculators > Bisection method example

1. Bisection method example ( Enter your problem )
  1. Algorithm & Example-1 `f(x)=x^3-x-1`
  2. Example-2 `f(x)=2x^3-2x-5`
  3. Example-3 `x=sqrt(12)`
  4. Example-4 `x=root(3)(48)`
  5. Example-5 `f(x)=x^3+2x^2+x-1`
Other related methods
  1. Bisection method
  2. False Position method (regula falsi method)
  3. Newton Raphson method
  4. Fixed Point Iteration method
  5. Secant method
  6. Muller method
  7. Halley's method
  8. Steffensen's method
  9. Ridder's method

4. Example-4 `x=root(3)(48)`
(Previous example)
2. False Position method (regula falsi method)
(Next method)

5. Example-5 `f(x)=x^3+2x^2+x-1`





Find a root of an equation `f(x)=x^3+2x^2+x-1` using Bisection method

Solution:
Here `x^3+2x^2+x-1=0`

Let `f(x) = x^3+2x^2+x-1`

Here
`x`01
`f(x)`-13



`1^(st)` iteration :

Here `f(0) = -1 < 0` and `f(1) = 3 > 0`

`:.` Now, Root lies between `0` and `1`

`x_0=(0+1)/2=0.5`

`f(x_0)=f(0.5)=0.5^3+2*0.5^2+0.5-1=0.125 > 0`


`2^(nd)` iteration :

Here `f(0) = -1 < 0` and `f(0.5) = 0.125 > 0`

`:.` Now, Root lies between `0` and `0.5`

`x_1=(0+0.5)/2=0.25`

`f(x_1)=f(0.25)=0.25^3+2*0.25^2+0.25-1=-0.6094 < 0`


`3^(rd)` iteration :

Here `f(0.25) = -0.6094 < 0` and `f(0.5) = 0.125 > 0`

`:.` Now, Root lies between `0.25` and `0.5`

`x_2=(0.25+0.5)/2=0.375`

`f(x_2)=f(0.375)=0.375^3+2*0.375^2+0.375-1=-0.291 < 0`


`4^(th)` iteration :

Here `f(0.375) = -0.291 < 0` and `f(0.5) = 0.125 > 0`

`:.` Now, Root lies between `0.375` and `0.5`

`x_3=(0.375+0.5)/2=0.4375`

`f(x_3)=f(0.4375)=0.4375^3+2*0.4375^2+0.4375-1=-0.0959 < 0`


`5^(th)` iteration :

Here `f(0.4375) = -0.0959 < 0` and `f(0.5) = 0.125 > 0`

`:.` Now, Root lies between `0.4375` and `0.5`

`x_4=(0.4375+0.5)/2=0.4688`

`f(x_4)=f(0.4688)=0.4688^3+2*0.4688^2+0.4688-1=0.0112 > 0`


`6^(th)` iteration :

Here `f(0.4375) = -0.0959 < 0` and `f(0.4688) = 0.0112 > 0`

`:.` Now, Root lies between `0.4375` and `0.4688`

`x_5=(0.4375+0.4688)/2=0.4531`

`f(x_5)=f(0.4531)=0.4531^3+2*0.4531^2+0.4531-1=-0.0432 < 0`


`7^(th)` iteration :

Here `f(0.4531) = -0.0432 < 0` and `f(0.4688) = 0.0112 > 0`

`:.` Now, Root lies between `0.4531` and `0.4688`

`x_6=(0.4531+0.4688)/2=0.4609`

`f(x_6)=f(0.4609)=0.4609^3+2*0.4609^2+0.4609-1=-0.0162 < 0`


`8^(th)` iteration :

Here `f(0.4609) = -0.0162 < 0` and `f(0.4688) = 0.0112 > 0`

`:.` Now, Root lies between `0.4609` and `0.4688`

`x_7=(0.4609+0.4688)/2=0.4648`

`f(x_7)=f(0.4648)=0.4648^3+2*0.4648^2+0.4648-1=-0.0026 < 0`


`9^(th)` iteration :

Here `f(0.4648) = -0.0026 < 0` and `f(0.4688) = 0.0112 > 0`

`:.` Now, Root lies between `0.4648` and `0.4688`

`x_8=(0.4648+0.4688)/2=0.4668`

`f(x_8)=f(0.4668)=0.4668^3+2*0.4668^2+0.4668-1=0.0043 > 0`


`10^(th)` iteration :

Here `f(0.4648) = -0.0026 < 0` and `f(0.4668) = 0.0043 > 0`

`:.` Now, Root lies between `0.4648` and `0.4668`

`x_9=(0.4648+0.4668)/2=0.4658`

`f(x_9)=f(0.4658)=0.4658^3+2*0.4658^2+0.4658-1=0.0009 > 0`


`11^(th)` iteration :

Here `f(0.4648) = -0.0026 < 0` and `f(0.4658) = 0.0009 > 0`

`:.` Now, Root lies between `0.4648` and `0.4658`

`x_10=(0.4648+0.4658)/2=0.4653`

`f(x_10)=f(0.4653)=0.4653^3+2*0.4653^2+0.4653-1=-0.0008 < 0`


`12^(th)` iteration :

Here `f(0.4653) = -0.0008 < 0` and `f(0.4658) = 0.0009 > 0`

`:.` Now, Root lies between `0.4653` and `0.4658`

`x_11=(0.4653+0.4658)/2=0.4656`

`f(x_11)=f(0.4656)=0.4656^3+2*0.4656^2+0.4656-1=0 > 0`


Approximate root of the equation `x^3+2x^2+x-1=0` using Bisection method is `0.4656` (After 12 iterations)

`n``a``f(a)``b``f(b)``c=(a + b)/2``f(c)`Update
10-1130.50.125`b = c`
20-10.50.1250.25-0.6094`a = c`
30.25-0.60940.50.1250.375-0.291`a = c`
40.375-0.2910.50.1250.4375-0.0959`a = c`
50.4375-0.09590.50.1250.46880.0112`b = c`
60.4375-0.09590.46880.01120.4531-0.0432`a = c`
70.4531-0.04320.46880.01120.4609-0.0162`a = c`
80.4609-0.01620.46880.01120.4648-0.0026`a = c`
90.4648-0.00260.46880.01120.46680.0043`b = c`
100.4648-0.00260.46680.00430.46580.0009`b = c`
110.4648-0.00260.46580.00090.4653-0.0008`a = c`
120.4653-0.00080.46580.00090.46560`b = c`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-4 `x=root(3)(48)`
(Previous example)
2. False Position method (regula falsi method)
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.