Home > College Algebra calculators > Fermat's Little Theorem example

7. Fermat's Little Theorem example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `3^87 mod 5`
  3. Example-3 : `5^284 mod 7`
  4. Example-4 : `5^119 mod 59`
  5. Example-5 : `3^100,000 mod 53`
  6. Example-5 : `a=3` and `p=5`
  7. Example-5 : `a=3` and `p=7`
  8. Example-5 : `a=7` and `p=11`
  9. Example-5 : `a=7` and `p=13`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

3. Example-3 : `5^284 mod 7`
(Previous example)
5. Example-5 : `3^100,000 mod 53`
(Next example)

4. Example-4 : `5^119 mod 59`





5^119 mod 59 using Fermat's Little Theorem

Solution:
`5^(119) ("mod "59)`

Fermat's Little Theorem
`a^(p-1)-=1 ("mod "p)` (where `p` is prime, `a` is not divisible by `p`)


Step-1: Identify conditions :
`p=59` is prime.

`a=5` is not divisible by `p=59`.

So, Apply the theorem
`5^(59-1)-=1 ("mod "59)`

`5^(58)-=1 ("mod "59)`

Step-2: Reduce the exponent `119`

`119-:58=2` with a remainder of `3`

i.e., `119=58xx2+3`

Step-3: Simplify
We have
`5^(58)-=1 ("mod "59)`

Taking power `2` on both sides

`(5^(58))^2-=1^2 ("mod "59)`

`5^((58xx2))-=1 ("mod "59)`

Multiply by `5^3` on both sides

`5^((58xx2))xx5^3-=1xx5^3 ("mod "59)`

`5^((58xx2)+3)-=5^3 ("mod "59)`

`5^(119)-=125 ("mod "59)`

`5^(119)-=7 ("mod "59)`

`:.` The remainder is `7` when you divide `5^(119)` by `59`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 : `5^284 mod 7`
(Previous example)
5. Example-5 : `3^100,000 mod 53`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.