Home > College Algebra calculators > Fermat's Little Theorem example

7. Fermat's Little Theorem example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `3^87 mod 5`
  3. Example-3 : `5^284 mod 7`
  4. Example-4 : `5^119 mod 59`
  5. Example-5 : `3^100,000 mod 53`
  6. Example-5 : `a=3` and `p=5`
  7. Example-5 : `a=3` and `p=7`
  8. Example-5 : `a=7` and `p=11`
  9. Example-5 : `a=7` and `p=13`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

4. Example-4 : `5^119 mod 59`
(Previous example)
6. Example-5 : `a=3` and `p=5`
(Next example)

5. Example-5 : `3^100,000 mod 53`





3^100,000 mod 53 using Fermat's Little Theorem

Solution:
`3^(100000) ("mod "53)`

Fermat's Little Theorem
`a^(p-1)-=1 ("mod "p)` (where `p` is prime, `a` is not divisible by `p`)


Step-1: Identify conditions :
`p=53` is prime.

`a=3` is not divisible by `p=53`.

So, Apply the theorem
`3^(53-1)-=1 ("mod "53)`

`3^(52)-=1 ("mod "53)`

Step-2: Reduce the exponent `100000`

`100000-:52=1923` with a remainder of `4`

i.e., `100000=52xx1923+4`

Step-3: Simplify
We have
`3^(52)-=1 ("mod "53)`

Taking power `1923` on both sides

`(3^(52))^1923-=1^1923 ("mod "53)`

`3^((52xx1923))-=1 ("mod "53)`

Multiply by `3^4` on both sides

`3^((52xx1923))xx3^4-=1xx3^4 ("mod "53)`

`3^((52xx1923)+4)-=3^4 ("mod "53)`

`3^(100000)-=81 ("mod "53)`

`3^(100000)-=28 ("mod "53)`

`:.` The remainder is `28` when you divide `3^(100000)` by `53`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-4 : `5^119 mod 59`
(Previous example)
6. Example-5 : `a=3` and `p=5`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.