Home > College Algebra calculators > Fermat's Little Theorem example

7. Fermat's Little Theorem example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `3^87 mod 5`
  3. Example-3 : `5^284 mod 7`
  4. Example-4 : `5^119 mod 59`
  5. Example-5 : `3^100,000 mod 53`
  6. Example-5 : `a=3` and `p=5`
  7. Example-5 : `a=3` and `p=7`
  8. Example-5 : `a=7` and `p=11`
  9. Example-5 : `a=7` and `p=13`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

7. Example-5 : `a=3` and `p=7`
(Previous example)
9. Example-5 : `a=7` and `p=13`
(Next example)

8. Example-5 : `a=7` and `p=11`





Fermat's Little Theorem for `a=7` and `p=11`

Solution:
Fermat's Little Theorem
`a^(p-1)-=1 ("mod "p)` (where `p` is prime, `a` is not divisible by `p`)


Here `a=7, p=11` (Given)

`p=11` is prime. (First condition holds)

`a=7` is not divisible by `p=11`. (Second condition holds)

Now, we find remainder using Modulo method

`a^(p-1) " mod "p`

`7^10" mod "11`

Here `7^10=(7^2)^5`

`=(7^2" mod "11)^5" mod "11`

`=(49" mod "11)^5" mod "11`

`=5^5" mod "11`

Here `5^5=(5^2)^2*5`

`=(((5^2" mod "11)^2" mod "11)*(5" mod "11))" mod "11`

`=(((25" mod "11)^2" mod "11)*5)" mod "11`

`=((3^2" mod "11)*5)" mod "11`

Here `3^2=(3^2)^1`

`=((9" mod "11)*5)" mod "11`

`=(9*5)" mod "11`

`=45" mod "11`

`=1`


`:.` The remainder is `1`

So the values satisfy the Fermat's Little Theorem.




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Example-5 : `a=3` and `p=7`
(Previous example)
9. Example-5 : `a=7` and `p=13`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.