Home > College Algebra calculators > Fermat's Little Theorem example

7. Fermat's Little Theorem example ( Enter your problem )
  1. Example-1 : `3^302 mod 5`
  2. Example-2 : `3^87 mod 5`
  3. Example-3 : `5^284 mod 7`
  4. Example-4 : `5^119 mod 59`
  5. Example-5 : `3^100,000 mod 53`
  6. Example-5 : `a=3` and `p=5`
  7. Example-5 : `a=3` and `p=7`
  8. Example-5 : `a=7` and `p=11`
  9. Example-5 : `a=7` and `p=13`
Other related methods
  1. Chinese Remainder Theorem
  2. Extended Euclidean Algorithm
  3. Euclid's Algorithm
  4. Modular multiplicative inverse
  5. Modulo
  6. Fast modular exponentiation
  7. Fermat's Little Theorem

8. Example-5 : `a=7` and `p=11`
(Previous example)

9. Example-5 : `a=7` and `p=13`





Fermat's Little Theorem for `a=7` and `p=13`

Solution:
Fermat's Little Theorem
`a^(p-1)-=1 ("mod "p)` (where `p` is prime, `a` is not divisible by `p`)


Here `a=7, p=13` (Given)

`p=13` is prime. (First condition holds)

`a=7` is not divisible by `p=13`. (Second condition holds)

Now, we find remainder using Modulo method

`a^(p-1) " mod "p`

`7^12" mod "13`

Here `7^12=(7^2)^6`

`=(7^2" mod "13)^6" mod "13`

`=(49" mod "13)^6" mod "13`

`=10^6" mod "13`

Here `10^6=(10^2)^3`

`=(10^2" mod "13)^3" mod "13`

`=(100" mod "13)^3" mod "13`

`=9^3" mod "13`

Here `9^3=(9^2)^1*9`

`=((81" mod "13)*9)" mod "13`

`=(3*9)" mod "13`

`=27" mod "13`

`=1`


`:.` The remainder is `1`

So the values satisfy the Fermat's Little Theorem.




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



8. Example-5 : `a=7` and `p=11`
(Previous example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.